Spaces:
Sleeping
Sleeping
File size: 14,575 Bytes
7d8766d 8df038f f835b15 8df038f f835b15 8df038f f835b15 8df038f 7d8766d 95a65b5 ae690b5 3281875 ae690b5 7d8766d 42cf287 4fcb874 42cf287 4fcb874 7d8766d 4ac96da 7d8766d 3281875 7d8766d 3281875 7d8766d e72f7ee fc4137d 1de9151 fc4137d 1de9151 fc4137d 1de9151 fc4137d 1de9151 fc4137d fb19975 fc4137d f706a7d d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
# Download necessary resources (comment out if already downloaded)
nltk.download('punkt')
nltk.download('stopwords')
def preprocess_text(text):
"""
This function preprocesses the text for training.
Args:
text: String containing the text data.
Returns:
A list of preprocessed tokens.
"""
# Tokenization
tokens = nltk.word_tokenize(text.lower()) # Lowercase and tokenize
# Stop word removal
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Stemming (optional - Experiment with stemming vs lemmatization)
stemmer = PorterStemmer()
tokens = [stemmer.stem(word) for word in tokens]
return tokens
# Read the Bhagavad Gita text file
with open("Geeta.txt", "r") as f:
bhagavad_gita_text = f.read()
# Preprocess the text
preprocessed_text = preprocess_text(bhagavad_gita_text)
# Install spaCy (if not already installed)
# pip install spacy
import spacy
# Load a spaCy model for English language processing
# nlp = spacy.load("en_core_web_sm")
# import spacy
import subprocess
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading en_core_web_sm model...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# @st.cache(allow_output_mutation=True)
# def download_and_load_model():
# try:
# nlp = spacy.load("en_core_web_sm")
# except OSError:
# print("Downloading en_core_web_sm model...")
# !python -m spacy download en_core_web_sm # This line works within the cached function
# nlp = spacy.load("en_core_web_sm")
# return nlp
# # Later in your code, use the model:
# nlp = download_and_load_model()
def extractive_qa(question, text):
"""
This function attempts to answer a question by extracting relevant phrases from the text.
Args:
question: The user's question.
text: The text to search for answers (Bhagavad Gita text).
Returns:
A potential answer extracted from the text (or None if not found).
"""
doc = nlp(text)
doc_question = nlp(question)
# Identify named entities and noun phrases in the question that might be relevant for searching the text
answer_candidates = []
for ent in doc_question.ents:
answer_candidates.append(ent.text)
for chunk in doc_question.noun_chunks:
answer_candidates.append(chunk.text)
# Search for the answer candidates within the text and return the first match
for candidate in answer_candidates:
if candidate in text:
return candidate
return None
# Use extractive_qa to generate some question-answer pairs from the Bhagavad Gita text
qa_pairs = []
for question in ["What is karma?", "Who is Arjuna?"]:
answer = extractive_qa(question, bhagavad_gita_text)
if answer:
qa_pairs.append((question, answer))
# You can combine manually curated and extractive QA pairs for a richer dataset.
# Create a list of question-answer pairs manually (replace with your examples)
# qa_pairs = [
# ("What is the central message of the Bhagavad Gita?", "The Bhagavad Gita emphasizes the importance of fulfilling one's duty without attachment to the outcome."),
# ("What is the role of Krishna in the Bhagavad Gita?", "Krishna acts as Arjuna's charioteer and divine guide, offering him philosophical knowledge and motivation to perform his duty."),
# # Add more question-answer pairs...
# ]
from transformers import BertTokenizer, TFBertForQuestionAnswering
from transformers import AdamW # Optimizer (optional)
# from transformers import SquadLoss # Loss function (optional)
# from transformers.models.squad import SquadLoss
# Load pre-trained model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertForQuestionAnswering.from_pretrained('bert-base-uncased')
# Function to prepare training data for transformers (omitted for brevity)
def prepare_training_data(qa_pairs, tokenizer):
"""
This function prepares training data for a question answering model by converting
question-answer pairs into model inputs (token IDs, attention masks).
Args:
qa_pairs: A list of tuples containing (question, answer) pairs.
tokenizer: A pre-trained tokenizer (e.g., BertTokenizer).
Returns:
A list of dictionaries containing model inputs for each question-answer pair.
"""
encoded_data = []
for question, answer in qa_pairs:
# Tokenize question and answer
question_encoded = tokenizer(question, add_special_tokens=True, return_tensors="pt")
answer_encoded = tokenizer(answer, add_special_tokens=True, return_tensors="pt")
# Create attention masks to identify relevant parts of the sequence
question_mask = question_encoded["attention_mask"]
answer_mask = answer_encoded["attention_mask"]
# Get start and end token IDs for the answer within the context (Bhagavad Gita text)
# This step might require adjustments depending on how you represent the context.
# Here, we assume the context is a single long string.
context = "your_bhagavad_gita_text_here" # Replace with your preprocessed Bhagavad Gita text
context_encoded = tokenizer(context, add_special_tokens=True, return_tensors="pt")
# start_positions = answer_encoded.input_ids == tokenizer.convert_tokens_to_ids(tokenizer.sep_token)[0] # Find first SEP token
# start_positions = answer_encoded.input_ids == [tokenizer.convert_tokens_to_ids(tokenizer.sep_token)[0]]
start_positions = answer_encoded.input_ids == [[tokenizer.convert_tokens_to_ids(tokenizer.sep_token)]] # Double square brackets for list of list
end_positions = answer_encoded.input_ids == [[tokenizer.convert_tokens_to_ids(tokenizer.eos_token)]] # Find first EOS token
# Combine all data into a dictionary for each QA pair
encoded_data.append({
"question_input_ids": question_encoded["input_ids"],
"question_attention_mask": question_mask,
"answer_start_positions": start_positions,
"answer_end_positions": end_positions,
})
return encoded_data
# Prepare training data
train_data = prepare_training_data(qa_pairs, tokenizer)
# Train the model
learning_rate = 2e-5
epochs = 3 # Adjust these values as needed
model.compile(optimizer=AdamW(learning_rate=learning_rate))
model.fit(train_data, epochs=epochs)
# loss=SquadLoss()
# Save the trained model and tokenizer
model.save_pretrained("bhagavad_gita_qa_model")
tokenizer.save_pretrained("bhagavad_gita_qa_model")
print("Model and tokenizer saved successfully!")
import streamlit as st
from transformers import pipeline # For loading the QA model
qa_pipeline = pipeline("question-answering", model="bhagavad_gita_qa_model")
st.title("Bhagavad Gita Question Answering")
st.subheader("Ask your questions about the Bhagavad Gita here.")
user_question = st.text_input("Enter your question:")
if user_question:
# Pass the user question and Bhagavad Gita text to the loaded model
answer = qa_pipeline(question=user_question, context=bhagavad_gita_text)
st.write(f"Answer: {answer['answer']}")
# Optionally, display additional information like confidence score
# st.write(f"Confidence Score: {answer['score']}")
# import google.generativeai as palm
# import streamlit as st
# import os
# # Set your API key
# palm.configure(api_key = os.environ['PALM_KEY'])
# # Select the PaLM 2 model
# model = 'models/text-bison-001'
# # Generate text
# if prompt := st.chat_input("Ask your query..."):
# enprom = f"""Act as bhagwan krishna and Answer the below provided query in context to first Bhagwad Geeta and then vedas, puranas and shastras if required. Use the verses and chapters sentences as references to your answer with suggestions
# coming from Bhagwad Geeta or vedas. Your answer to below query should be friendly and represent the characterstics of bhagwan krishna with fun and all knowing almight trait.\nQuery= {prompt}"""
# completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)
# # response = palm.chat(messages=["Hello."])
# # print(response.last) # 'Hello! What can I help you with?'
# # response.reply("Can you tell me a joke?")
# # Print the generated text
# with st.chat_message("Assistant"):
# st.write(prompt)
# st.write(completion.result)
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
# input_text = "Write me a poem about Machine Learning."
# input_ids = tokenizer(input_text, return_tensors="pt")
# outputs = model.generate(**input_ids)
# st.write(tokenizer.decode(outputs[0]))
# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# # from langchain.chat_models import ChatOpenAI
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import os
# # from transformers import T5Tokenizer, T5ForConditionalGeneration
# # from langchain.callbacks import get_openai_callback
# hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]
# def get_pdf_text(pdf_docs):
# text = ""
# for pdf in pdf_docs:
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text()
# return text
# def get_text_chunks(text):
# text_splitter = CharacterTextSplitter(
# separator="\n",
# chunk_size=200,
# chunk_overlap=20,
# length_function=len
# )
# chunks = text_splitter.split_text(text)
# return chunks
# def get_vectorstore(text_chunks):
# # embeddings = OpenAIEmbeddings()
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# embeddings = HuggingFaceEmbeddings()
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
# def get_conversation_chain(vectorstore):
# # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
# # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
# # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
# llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})
# memory = ConversationBufferMemory(
# memory_key='chat_history', return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=vectorstore.as_retriever(),
# memory=memory
# )
# return conversation_chain
# def handle_userinput(user_question):
# response = st.session_state.conversation
# reply = response.run(user_question)
# st.write(reply)
# # st.session_state.chat_history = response['chat_history']
# # for i, message in enumerate(st.session_state.chat_history):
# # if i % 2 == 0:
# # st.write(user_template.replace(
# # "{{MSG}}", message.content), unsafe_allow_html=True)
# # else:
# # st.write(bot_template.replace(
# # "{{MSG}}", message.content), unsafe_allow_html=True)
# def main():
# load_dotenv()
# st.set_page_config(page_title="Chat with multiple PDFs",
# page_icon=":books:")
# st.write(css, unsafe_allow_html=True)
# if "conversation" not in st.session_state:
# st.session_state.conversation = None
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = None
# st.header("Chat with multiple PDFs :books:")
# user_question = st.text_input("Ask a question about your documents:")
# if user_question:
# handle_userinput(user_question)
# with st.sidebar:
# st.subheader("Your documents")
# pdf_docs = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# if st.button("Process"):
# if(len(pdf_docs) == 0):
# st.error("Please upload at least one PDF")
# else:
# with st.spinner("Processing"):
# # get pdf text
# raw_text = get_pdf_text(pdf_docs)
# # get the text chunks
# text_chunks = get_text_chunks(raw_text)
# # create vector store
# vectorstore = get_vectorstore(text_chunks)
# # create conversation chain
# st.session_state.conversation = get_conversation_chain(
# vectorstore)
# if __name__ == '__main__':
# main()
# # import os
# # import getpass
# # import streamlit as st
# # from langchain.document_loaders import PyPDFLoader
# # from langchain.text_splitter import RecursiveCharacterTextSplitter
# # from langchain.embeddings import HuggingFaceEmbeddings
# # from langchain.vectorstores import Chroma
# # from langchain import HuggingFaceHub
# # from langchain.chains import RetrievalQA
# # # __import__('pysqlite3')
# # # import sys
# # # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# # # load huggingface api key
# # hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]
# # # use streamlit file uploader to ask user for file
# # # file = st.file_uploader("Upload PDF")
# # path = "Geeta.pdf"
# # loader = PyPDFLoader(path)
# # pages = loader.load()
# # # st.write(pages)
# # splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
# # docs = splitter.split_documents(pages)
# # embeddings = HuggingFaceEmbeddings()
# # doc_search = Chroma.from_documents(docs, embeddings)
# # repo_id = "tiiuae/falcon-7b"
# # llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})
# # from langchain.schema import retriever
# # retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())
# # if query := st.chat_input("Enter a question: "):
# # with st.chat_message("assistant"):
# # st.write(retireval_chain.run(query)) |