File size: 14,575 Bytes
7d8766d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df038f
 
 
f835b15
 
 
8df038f
 
 
 
 
f835b15
8df038f
 
f835b15
 
 
 
 
 
 
 
 
 
 
 
 
8df038f
7d8766d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a65b5
ae690b5
3281875
ae690b5
7d8766d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42cf287
4fcb874
 
42cf287
4fcb874
7d8766d
 
 
 
 
 
 
 
 
 
 
 
4ac96da
7d8766d
 
 
 
3281875
7d8766d
 
3281875
 
7d8766d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e72f7ee
 
 
fc4137d
 
1de9151
fc4137d
1de9151
 
fc4137d
1de9151
 
fc4137d
1de9151
 
fc4137d
fb19975
fc4137d
 
 
f706a7d
d552a50
 
be40012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d552a50
be40012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d552a50
be40012
 
d552a50
be40012
 
 
d552a50
be40012
 
d552a50
 
 
 
 
 
be40012
 
 
 
 
 
 
 
 
 
 
 
d552a50
 
be40012
 
d552a50
be40012
 
d552a50
 
be40012
 
 
d552a50
be40012
d552a50
be40012
 
d552a50
be40012
 
d552a50
be40012
 
d552a50
be40012
 
d552a50
be40012
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer

# Download necessary resources (comment out if already downloaded)
nltk.download('punkt')
nltk.download('stopwords')

def preprocess_text(text):
  """
  This function preprocesses the text for training.

  Args:
      text: String containing the text data.

  Returns:
      A list of preprocessed tokens.
  """
  # Tokenization
  tokens = nltk.word_tokenize(text.lower())  # Lowercase and tokenize

  # Stop word removal
  stop_words = set(stopwords.words('english'))
  tokens = [word for word in tokens if word not in stop_words]

  # Stemming (optional - Experiment with stemming vs lemmatization)
  stemmer = PorterStemmer()
  tokens = [stemmer.stem(word) for word in tokens]

  return tokens

# Read the Bhagavad Gita text file
with open("Geeta.txt", "r") as f:
  bhagavad_gita_text = f.read()

# Preprocess the text
preprocessed_text = preprocess_text(bhagavad_gita_text)

# Install spaCy (if not already installed)
# pip install spacy
import spacy

# Load a spaCy model for English language processing
# nlp = spacy.load("en_core_web_sm")

# import spacy
import subprocess



try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    print("Downloading en_core_web_sm model...")
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# @st.cache(allow_output_mutation=True)
# def download_and_load_model():
#     try:
#         nlp = spacy.load("en_core_web_sm")
#     except OSError:
#         print("Downloading en_core_web_sm model...")
#         !python -m spacy download en_core_web_sm  # This line works within the cached function
#         nlp = spacy.load("en_core_web_sm")
#     return nlp

# # Later in your code, use the model:
# nlp = download_and_load_model()



def extractive_qa(question, text):
  """
  This function attempts to answer a question by extracting relevant phrases from the text.

  Args:
      question: The user's question.
      text: The text to search for answers (Bhagavad Gita text).

  Returns:
      A potential answer extracted from the text (or None if not found).
  """
  doc = nlp(text)
  doc_question = nlp(question)

  # Identify named entities and noun phrases in the question that might be relevant for searching the text
  answer_candidates = []
  for ent in doc_question.ents:
      answer_candidates.append(ent.text)
  for chunk in doc_question.noun_chunks:
      answer_candidates.append(chunk.text)

  # Search for the answer candidates within the text and return the first match
  for candidate in answer_candidates:
      if candidate in text:
          return candidate
  return None

# Use extractive_qa to generate some question-answer pairs from the Bhagavad Gita text
qa_pairs = []
for question in ["What is karma?", "Who is Arjuna?"]:
  answer = extractive_qa(question, bhagavad_gita_text)
  if answer:
      qa_pairs.append((question, answer))

# You can combine manually curated and extractive QA pairs for a richer dataset.
# Create a list of question-answer pairs manually (replace with your examples)
# qa_pairs = [
#   ("What is the central message of the Bhagavad Gita?", "The Bhagavad Gita emphasizes the importance of fulfilling one's duty without attachment to the outcome."),
#   ("What is the role of Krishna in the Bhagavad Gita?", "Krishna acts as Arjuna's charioteer and divine guide, offering him philosophical knowledge and motivation to perform his duty."),
#   # Add more question-answer pairs...
# ]
from transformers import BertTokenizer, TFBertForQuestionAnswering
from transformers import AdamW  # Optimizer (optional)
# from transformers import SquadLoss  # Loss function (optional)
# from transformers.models.squad import SquadLoss


# Load pre-trained model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertForQuestionAnswering.from_pretrained('bert-base-uncased')


# Function to prepare training data for transformers (omitted for brevity)
def prepare_training_data(qa_pairs, tokenizer):
  """
  This function prepares training data for a question answering model by converting
  question-answer pairs into model inputs (token IDs, attention masks).

  Args:
      qa_pairs: A list of tuples containing (question, answer) pairs.
      tokenizer: A pre-trained tokenizer (e.g., BertTokenizer).

  Returns:
      A list of dictionaries containing model inputs for each question-answer pair.
  """

  encoded_data = []
  for question, answer in qa_pairs:
    # Tokenize question and answer
    question_encoded = tokenizer(question, add_special_tokens=True, return_tensors="pt")
    answer_encoded = tokenizer(answer, add_special_tokens=True, return_tensors="pt")

    # Create attention masks to identify relevant parts of the sequence
    question_mask = question_encoded["attention_mask"]
    answer_mask = answer_encoded["attention_mask"]

    # Get start and end token IDs for the answer within the context (Bhagavad Gita text)
    # This step might require adjustments depending on how you represent the context.
    # Here, we assume the context is a single long string.
    context = "your_bhagavad_gita_text_here"  # Replace with your preprocessed Bhagavad Gita text
    context_encoded = tokenizer(context, add_special_tokens=True, return_tensors="pt")
    # start_positions = answer_encoded.input_ids == tokenizer.convert_tokens_to_ids(tokenizer.sep_token)[0]  # Find first SEP token
    # start_positions = answer_encoded.input_ids == [tokenizer.convert_tokens_to_ids(tokenizer.sep_token)[0]]
    start_positions = answer_encoded.input_ids == [[tokenizer.convert_tokens_to_ids(tokenizer.sep_token)]]  # Double square brackets for list of list

    end_positions = answer_encoded.input_ids == [[tokenizer.convert_tokens_to_ids(tokenizer.eos_token)]]  # Find first EOS token

    # Combine all data into a dictionary for each QA pair
    encoded_data.append({
      "question_input_ids": question_encoded["input_ids"],
      "question_attention_mask": question_mask,
      "answer_start_positions": start_positions,
      "answer_end_positions": end_positions,
    })

  return encoded_data

# Prepare training data
train_data = prepare_training_data(qa_pairs, tokenizer)

# Train the model
learning_rate = 2e-5
epochs = 3  # Adjust these values as needed
model.compile(optimizer=AdamW(learning_rate=learning_rate))
model.fit(train_data, epochs=epochs)

# loss=SquadLoss()

# Save the trained model and tokenizer
model.save_pretrained("bhagavad_gita_qa_model")
tokenizer.save_pretrained("bhagavad_gita_qa_model")

print("Model and tokenizer saved successfully!")

import streamlit as st
from transformers import pipeline  # For loading the QA model

qa_pipeline = pipeline("question-answering", model="bhagavad_gita_qa_model")

st.title("Bhagavad Gita Question Answering")
st.subheader("Ask your questions about the Bhagavad Gita here.")

user_question = st.text_input("Enter your question:")

if user_question:
  # Pass the user question and Bhagavad Gita text to the loaded model
  answer = qa_pipeline(question=user_question, context=bhagavad_gita_text)
  st.write(f"Answer: {answer['answer']}")
  # Optionally, display additional information like confidence score
  # st.write(f"Confidence Score: {answer['score']}")













# import google.generativeai as palm
# import streamlit as st 
# import os 

# # Set your API key
# palm.configure(api_key = os.environ['PALM_KEY'])

# # Select the PaLM 2 model
# model = 'models/text-bison-001'

# # Generate text
# if prompt := st.chat_input("Ask your query..."):
#     enprom = f"""Act as bhagwan krishna and Answer the below provided query in context to first Bhagwad Geeta and then vedas, puranas and shastras if required. Use the verses and chapters sentences as references to your answer with suggestions
#     coming from Bhagwad Geeta or vedas. Your answer to below query should be friendly and represent the characterstics of bhagwan krishna with fun and all knowing almight trait.\nQuery= {prompt}"""
#     completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)

# # response = palm.chat(messages=["Hello."])
# # print(response.last) #  'Hello! What can I help you with?'
# # response.reply("Can you tell me a joke?")

# # Print the generated text
#     with st.chat_message("Assistant"):
#         st.write(prompt)
#         st.write(completion.result)





# from transformers import AutoTokenizer, AutoModelForCausalLM

# tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")

# input_text = "Write me a poem about Machine Learning."
# input_ids = tokenizer(input_text, return_tensors="pt")

# outputs = model.generate(**input_ids)
# st.write(tokenizer.decode(outputs[0]))








# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# # from langchain.chat_models import ChatOpenAI
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import os 
# # from transformers import T5Tokenizer, T5ForConditionalGeneration
# # from langchain.callbacks import get_openai_callback

# hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]

# def get_pdf_text(pdf_docs):
#     text = ""
#     for pdf in pdf_docs:
#         pdf_reader = PdfReader(pdf)
#         for page in pdf_reader.pages:
#             text += page.extract_text()
#     return text


# def get_text_chunks(text):
#     text_splitter = CharacterTextSplitter(
#         separator="\n",
#         chunk_size=200,
#         chunk_overlap=20,
#         length_function=len
#     )
#     chunks = text_splitter.split_text(text)
#     return chunks


# def get_vectorstore(text_chunks):
#     # embeddings = OpenAIEmbeddings()
#     # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
#     embeddings = HuggingFaceEmbeddings()
#     vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
#     return vectorstore


# def get_conversation_chain(vectorstore):
#     # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
#     # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
#     # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")

#     llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})

#     memory = ConversationBufferMemory(
#         memory_key='chat_history', return_messages=True)
#     conversation_chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=vectorstore.as_retriever(),
#         memory=memory
#     )
#     return conversation_chain


# def handle_userinput(user_question):
#     response = st.session_state.conversation
#     reply = response.run(user_question)
#     st.write(reply)
#     # st.session_state.chat_history = response['chat_history']

#     # for i, message in enumerate(st.session_state.chat_history):
#     #     if i % 2 == 0:
#     #         st.write(user_template.replace(
#     #             "{{MSG}}", message.content), unsafe_allow_html=True)
#     #     else:
#     #         st.write(bot_template.replace(
#     #             "{{MSG}}", message.content), unsafe_allow_html=True)


# def main():
#     load_dotenv()
#     st.set_page_config(page_title="Chat with multiple PDFs",
#                        page_icon=":books:")
#     st.write(css, unsafe_allow_html=True)

#     if "conversation" not in st.session_state:
#         st.session_state.conversation = None
#     if "chat_history" not in st.session_state:
#         st.session_state.chat_history = None

#     st.header("Chat with multiple PDFs :books:")
#     user_question = st.text_input("Ask a question about your documents:")
#     if user_question:
#         handle_userinput(user_question)

#     with st.sidebar:
#         st.subheader("Your documents")
#         pdf_docs = st.file_uploader(
#             "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
#         if st.button("Process"):
#             if(len(pdf_docs) == 0):
#                 st.error("Please upload at least one PDF")
#             else:
#                 with st.spinner("Processing"):
#                     # get pdf text
#                     raw_text = get_pdf_text(pdf_docs)

#                     # get the text chunks
#                     text_chunks = get_text_chunks(raw_text)

#                     # create vector store
#                     vectorstore = get_vectorstore(text_chunks)

#                     # create conversation chain
#                     st.session_state.conversation = get_conversation_chain(
#                         vectorstore)

# if __name__ == '__main__':
#     main()






# # import os
# # import getpass
# # import streamlit as st
# # from langchain.document_loaders import PyPDFLoader
# # from langchain.text_splitter import RecursiveCharacterTextSplitter
# # from langchain.embeddings import HuggingFaceEmbeddings
# # from langchain.vectorstores import Chroma
# # from langchain import HuggingFaceHub
# # from langchain.chains import RetrievalQA
# # # __import__('pysqlite3')
# # # import sys
# # # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')


# # # load huggingface api key
# # hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]

# # # use streamlit file uploader to ask user for file
# # # file = st.file_uploader("Upload PDF")


# # path = "Geeta.pdf"
# # loader = PyPDFLoader(path)
# # pages = loader.load()

# # # st.write(pages)

# # splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
# # docs = splitter.split_documents(pages)

# # embeddings = HuggingFaceEmbeddings()
# # doc_search = Chroma.from_documents(docs, embeddings)

# # repo_id = "tiiuae/falcon-7b"
# # llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})

# # from langchain.schema import retriever
# # retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())

# # if query := st.chat_input("Enter a question: "):
# #   with st.chat_message("assistant"):
# #     st.write(retireval_chain.run(query))