Shi-Ci-app / app.py
Cran-May's picture
Update app.py
af56287
raw
history blame
6.23 kB
import gradio as gr
import copy
import random
import os
import requests
import time
import sys
from huggingface_hub import snapshot_download
from llama_cpp import Llama
SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese.
You are good at speaking English and Chinese.
You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information.
You are based on SEA model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI.
Let's work this out in a step by step way to be sure we have the right answer.\n\n'''
SYSTEM_TOKEN = 1587
USER_TOKEN = 2188
BOT_TOKEN = 12435
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {"role": "system", "content": SYSTEM_PROMPT}
return get_message_tokens(model, **system_message)
repo_name = "Cran-May/OpenSLIDE"
model_name = "SLIDE.0.1.gguf"
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
model = Llama(
model_path=model_name,
n_ctx=2000,
n_parts=1,
)
max_new_tokens = 1500
def user(message, history):
new_history = history + [[message, None]]
return "", new_history
def bot(
history,
system_prompt,
top_p,
top_k,
temp
):
tokens = get_system_tokens(model)[:]
tokens.append(LINEBREAK_TOKEN)
for user_message, bot_message in history[:-1]:
message_tokens = get_message_tokens(model=model, role="user", content=user_message)
tokens.extend(message_tokens)
if bot_message:
message_tokens = get_message_tokens(model=model, role="bot", content=bot_message)
tokens.extend(message_tokens)
last_user_message = history[-1][0]
message_tokens = get_message_tokens(model=model, role="user", content=last_user_message)
tokens.extend(message_tokens)
role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
tokens.extend(role_tokens)
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temp
)
partial_text = ""
for i, token in enumerate(generator):
if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
break
partial_text += model.detokenize([token]).decode("utf-8", "ignore")
history[-1][1] = partial_text
yield history
with gr.Blocks(
theme=gr.themes.Soft()
) as demo:
gr.Markdown(f"""<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>""")
gr.Markdown(value="<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>
这儿是一个__中文__模型的部署。
这是量化版兮辞·析辞的部署,具有__70亿__个参数,在 CPU 上运行。
SLIDE 是一种会话语言模型,在多种类型的语料库上进行训练。
本节目由上海师范大学附属外国语中学__NLPark__赞助播出~")
with gr.Row():
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="兮辞如是说").style(height=400)
system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False, lines=5)
with gr.Column(min_width=80, scale=1):
with gr.Tab(label="设置参数"):
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
interactive=True,
label="Top-p",
)
top_k = gr.Slider(
minimum=10,
maximum=100,
value=30,
step=5,
interactive=True,
label="Top-k",
)
temp = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.2,
step=0.01,
interactive=True,
label="情感温度"
)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="来问问兮辞吧……",
placeholder="兮辞折寿中……",
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit / 开凹!")
stop = gr.Button("Stop / 全局时空断裂")
clear = gr.Button("Clear / 打扫群内垃圾")
with gr.Row():
gr.Markdown(
"""警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。"""
)
# Pressing Enter
submit_event = msg.submit(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).success(
fn=bot,
inputs=[
chatbot,
system_prompt,
top_p,
top_k,
temp
],
outputs=chatbot,
queue=True,
)
# Pressing the button
submit_click_event = submit.click(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).success(
fn=bot,
inputs=[
chatbot,
system_prompt,
top_p,
top_k,
temp
],
outputs=chatbot,
queue=True,
)
# Stop generation
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
# Clear history
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue(max_size=128, concurrency_count=1)
demo.launch()