Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,6 @@ hf_hub_download(
|
|
26 |
local_dir=model_dir
|
27 |
)
|
28 |
|
29 |
-
|
30 |
def get_messages_formatter_type(model_name):
|
31 |
return MessagesFormatterType.LLAMA_3
|
32 |
|
@@ -34,13 +33,8 @@ def chat_fn(message, history, model, system_message, max_tokens, temperature, to
|
|
34 |
history_list = history or []
|
35 |
response_generator = respond(message, history_list, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty)
|
36 |
|
37 |
-
for
|
38 |
-
|
39 |
-
for user_msg, bot_msg in current_history:
|
40 |
-
messages.append(ChatMessage(role="user", content=user_msg))
|
41 |
-
messages.append(ChatMessage(role="assistant", content=bot_msg))
|
42 |
-
|
43 |
-
yield messages, history
|
44 |
|
45 |
|
46 |
def respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
|
@@ -79,18 +73,12 @@ def respond(message, history, model, system_message, max_tokens, temperature, to
|
|
79 |
|
80 |
messages = BasicChatHistory()
|
81 |
|
82 |
-
for
|
83 |
-
user =
|
84 |
-
|
85 |
-
'content': msn[0]
|
86 |
-
}
|
87 |
-
assistant = {
|
88 |
-
'role': Roles.assistant,
|
89 |
-
'content': msn[1]
|
90 |
-
}
|
91 |
-
messages.add_message(user)
|
92 |
-
messages.add_message(assistant)
|
93 |
|
|
|
|
|
94 |
start_time = time.time()
|
95 |
token_count = 0
|
96 |
|
@@ -103,13 +91,12 @@ def respond(message, history, model, system_message, max_tokens, temperature, to
|
|
103 |
)
|
104 |
|
105 |
outputs = ""
|
106 |
-
|
107 |
-
|
108 |
for output in stream:
|
109 |
outputs += output
|
110 |
token_count += len(output.split())
|
111 |
-
|
112 |
-
yield
|
113 |
|
114 |
end_time = time.time()
|
115 |
latency = end_time - start_time
|
@@ -117,7 +104,6 @@ def respond(message, history, model, system_message, max_tokens, temperature, to
|
|
117 |
print(f"Latency: {latency} seconds")
|
118 |
print(f"Speed: {speed} tokens/second")
|
119 |
|
120 |
-
|
121 |
description = """<p><center>
|
122 |
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
|
123 |
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
|
|
|
26 |
local_dir=model_dir
|
27 |
)
|
28 |
|
|
|
29 |
def get_messages_formatter_type(model_name):
|
30 |
return MessagesFormatterType.LLAMA_3
|
31 |
|
|
|
33 |
history_list = history or []
|
34 |
response_generator = respond(message, history_list, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty)
|
35 |
|
36 |
+
for chat_history in response_generator:
|
37 |
+
yield chat_history.get_messages(), history # 直接yield BasicChatHistory 对象
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
def respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
|
|
|
73 |
|
74 |
messages = BasicChatHistory()
|
75 |
|
76 |
+
for user_msg, bot_msg in history:
|
77 |
+
messages.add_message(ChatMessage(role="user", content=user_msg))
|
78 |
+
messages.add_message(ChatMessage(role="assistant", content=bot_msg))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
messages.add_message(ChatMessage(role="user", content=message)) # 添加用户当前消息
|
81 |
+
|
82 |
start_time = time.time()
|
83 |
token_count = 0
|
84 |
|
|
|
91 |
)
|
92 |
|
93 |
outputs = ""
|
94 |
+
|
|
|
95 |
for output in stream:
|
96 |
outputs += output
|
97 |
token_count += len(output.split())
|
98 |
+
messages.add_message(ChatMessage(role="assistant", content=output))
|
99 |
+
yield messages
|
100 |
|
101 |
end_time = time.time()
|
102 |
latency = end_time - start_time
|
|
|
104 |
print(f"Latency: {latency} seconds")
|
105 |
print(f"Speed: {speed} tokens/second")
|
106 |
|
|
|
107 |
description = """<p><center>
|
108 |
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
|
109 |
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
|