Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,213 +1,411 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import copy
|
4 |
-
import random
|
5 |
-
import os
|
6 |
-
import requests
|
7 |
import time
|
8 |
-
import
|
9 |
|
10 |
os.system("pip install --upgrade pip")
|
11 |
os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')
|
12 |
|
13 |
-
from huggingface_hub import snapshot_download
|
14 |
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
USER_TOKEN = 2048
|
24 |
-
BOT_TOKEN = 3072
|
25 |
-
LINEBREAK_TOKEN = 64
|
26 |
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
return message_tokens
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
system_message = {"role": "system", "content": SYSTEM_PROMPT}
|
45 |
-
return get_message_tokens(model, **system_message)
|
46 |
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
system_prompt,
|
69 |
-
top_p,
|
70 |
-
top_k,
|
71 |
-
temp
|
72 |
-
):
|
73 |
-
tokens = get_system_tokens(model)[:]
|
74 |
-
tokens.append(LINEBREAK_TOKEN)
|
75 |
-
|
76 |
-
for User_message, Assistant_message in history[:-1]:
|
77 |
-
message_tokens = get_message_tokens(model=model, role="User", content=User_message)
|
78 |
-
tokens.extend(message_tokens)
|
79 |
-
if bot_message:
|
80 |
-
message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message)
|
81 |
-
tokens.extend(message_tokens)
|
82 |
-
|
83 |
-
last_user_message = history[-1][0]
|
84 |
-
message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,)
|
85 |
-
tokens.extend(message_tokens)
|
86 |
-
|
87 |
-
role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
|
88 |
-
tokens.extend(role_tokens)
|
89 |
-
generator = model.generate(
|
90 |
-
tokens,
|
91 |
-
top_k=top_k,
|
92 |
-
top_p=top_p,
|
93 |
-
temp=temp
|
94 |
-
)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
|
209 |
-
|
210 |
-
|
211 |
|
212 |
-
demo.queue(max_size=128, concurrency_count=1)
|
213 |
-
demo.launch()
|
|
|
1 |
+
import json
|
2 |
+
import subprocess
|
|
|
|
|
|
|
|
|
3 |
import time
|
4 |
+
import os
|
5 |
|
6 |
os.system("pip install --upgrade pip")
|
7 |
os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')
|
8 |
|
|
|
9 |
from llama_cpp import Llama
|
10 |
+
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
11 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
12 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
13 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
14 |
+
import gradio as gr
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
+
llm = None
|
18 |
+
llm_model = None
|
19 |
|
20 |
+
# Download the new model
|
21 |
+
hf_hub_download(
|
22 |
+
repo_id="Cran-May/openbuddy-llama3.2-3b-v23.2-131k-Q5_K_M-GGUF",
|
23 |
+
filename="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf",
|
24 |
+
local_dir="./models"
|
25 |
+
)
|
|
|
|
|
|
|
26 |
|
27 |
+
def get_messages_formatter_type(model_name):
|
28 |
+
return MessagesFormatterType.LLAMA_3
|
29 |
|
30 |
+
def respond(
|
31 |
+
message,
|
32 |
+
history: list[tuple[str, str]],
|
33 |
+
model,
|
34 |
+
system_message,
|
35 |
+
max_tokens,
|
36 |
+
temperature,
|
37 |
+
top_p,
|
38 |
+
top_k,
|
39 |
+
repeat_penalty,
|
40 |
+
):
|
41 |
+
global llm
|
42 |
+
global llm_model
|
43 |
+
|
44 |
+
chat_template = get_messages_formatter_type(model)
|
45 |
+
|
46 |
+
if llm is None or llm_model != model:
|
47 |
+
llm = Llama(
|
48 |
+
model_path=f"models/{model}",
|
49 |
+
n_gpu_layers=0, # Adjust based on your GPU
|
50 |
+
n_batch=8192, # Adjust based on your RAM
|
51 |
+
n_ctx=512, # Adjust based on your RAM and desired context length
|
52 |
+
)
|
53 |
+
llm_model = model
|
54 |
+
|
55 |
+
provider = LlamaCppPythonProvider(llm)
|
56 |
|
57 |
+
agent = LlamaCppAgent(
|
58 |
+
provider,
|
59 |
+
system_prompt=f"{system_message}",
|
60 |
+
predefined_messages_formatter_type=chat_template,
|
61 |
+
debug_output=True
|
62 |
+
)
|
63 |
+
|
64 |
+
settings = provider.get_provider_default_settings()
|
65 |
+
settings.temperature = temperature
|
66 |
+
settings.top_k = top_k
|
67 |
+
settings.top_p = top_p
|
68 |
+
settings.max_tokens = max_tokens
|
69 |
+
settings.repeat_penalty = repeat_penalty
|
70 |
+
settings.stream = True
|
71 |
+
|
72 |
+
messages = BasicChatHistory()
|
73 |
+
|
74 |
+
for msn in history:
|
75 |
+
user = {
|
76 |
+
'role': Roles.user,
|
77 |
+
'content': msn[0]
|
78 |
+
}
|
79 |
+
assistant = {
|
80 |
+
'role': Roles.assistant,
|
81 |
+
'content': msn[1]
|
82 |
+
}
|
83 |
+
messages.add_message(user)
|
84 |
+
messages.add_message(assistant)
|
85 |
+
|
86 |
+
start_time = time.time()
|
87 |
+
token_count = 0
|
88 |
+
|
89 |
+
stream = agent.get_chat_response(
|
90 |
+
message,
|
91 |
+
llm_sampling_settings=settings,
|
92 |
+
chat_history=messages,
|
93 |
+
returns_streaming_generator=True,
|
94 |
+
print_output=False
|
95 |
+
)
|
96 |
+
|
97 |
+
outputs = ""
|
98 |
+
for output in stream:
|
99 |
+
outputs += output
|
100 |
+
token_count += len(output.split())
|
101 |
+
yield outputs
|
102 |
|
103 |
+
end_time = time.time()
|
104 |
+
latency = end_time - start_time
|
105 |
+
speed = token_count / (end_time - start_time)
|
106 |
+
print(f"Latency: {latency} seconds")
|
107 |
+
print(f"Speed: {speed} tokens/second")
|
|
|
108 |
|
109 |
+
description = """<p><center>
|
110 |
+
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
|
111 |
|
112 |
+
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
|
|
|
|
|
113 |
|
114 |
+
</center></p>
|
115 |
+
"""
|
116 |
|
117 |
+
demo = gr.ChatInterface(
|
118 |
+
respond,
|
119 |
+
additional_inputs=[
|
120 |
+
gr.Dropdown([
|
121 |
+
"llama-3.2-1b-instruct-q4_k_m.gguf"
|
122 |
+
],
|
123 |
+
value="llama-3.2-1b-instruct-q4_k_m.gguf",
|
124 |
+
label="Model"
|
125 |
+
),
|
126 |
+
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:
|
127 |
|
128 |
+
1. Complex reasoning and problem-solving
|
129 |
+
2. Multilingual understanding and generation
|
130 |
+
3. Creative and analytical writing
|
131 |
+
4. Code understanding and generation
|
132 |
+
5. Task decomposition and step-by-step guidance
|
133 |
+
6. Summarization and information extraction
|
134 |
|
135 |
+
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
|
136 |
+
""", label="System message"),
|
137 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
|
138 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
139 |
+
gr.Slider(
|
140 |
+
minimum=0.1,
|
141 |
+
maximum=2.0,
|
142 |
+
value=0.9,
|
143 |
+
step=0.05,
|
144 |
+
label="Top-p",
|
145 |
+
),
|
146 |
+
gr.Slider(
|
147 |
+
minimum=0,
|
148 |
+
maximum=100,
|
149 |
+
value=1,
|
150 |
+
step=1,
|
151 |
+
label="Top-k",
|
152 |
+
),
|
153 |
+
gr.Slider(
|
154 |
+
minimum=0.0,
|
155 |
+
maximum=2.0,
|
156 |
+
value=1.1,
|
157 |
+
step=0.1,
|
158 |
+
label="Repetition penalty",
|
159 |
+
),
|
160 |
+
],
|
161 |
+
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
|
162 |
+
body_background_fill_dark="#16141c",
|
163 |
+
block_background_fill_dark="#16141c",
|
164 |
+
block_border_width="1px",
|
165 |
+
block_title_background_fill_dark="#1e1c26",
|
166 |
+
input_background_fill_dark="#292733",
|
167 |
+
button_secondary_background_fill_dark="#24212b",
|
168 |
+
border_color_accent_dark="#343140",
|
169 |
+
border_color_primary_dark="#343140",
|
170 |
+
background_fill_secondary_dark="#16141c",
|
171 |
+
color_accent_soft_dark="transparent",
|
172 |
+
code_background_fill_dark="#292733",
|
173 |
+
),
|
174 |
+
title="Meta Llama 3.2 (1B)",
|
175 |
+
description=description,
|
176 |
+
chatbot=gr.Chatbot(
|
177 |
+
scale=1,
|
178 |
+
likeable=True,
|
179 |
+
show_copy_button=True
|
180 |
+
),
|
181 |
+
examples=[
|
182 |
+
["Hello! Can you introduce yourself?"],
|
183 |
+
["What's the capital of France?"],
|
184 |
+
["Can you explain the concept of photosynthesis?"],
|
185 |
+
["Write a short story about a robot learning to paint."],
|
186 |
+
["Explain the difference between machine learning and deep learning."],
|
187 |
+
["Summarize the key points of climate change and its global impact."],
|
188 |
+
["Explain quantum computing to a 10-year-old."],
|
189 |
+
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."]
|
190 |
+
],
|
191 |
+
cache_examples=False,
|
192 |
+
autofocus=False,
|
193 |
+
concurrency_limit=None
|
194 |
)
|
195 |
|
196 |
+
if __name__ == "__main__":
|
197 |
+
demo.launch()
|
198 |
+
# 旧版代码--------------------------------
|
199 |
+
# import gradio as gr
|
200 |
|
201 |
+
# import copy
|
202 |
+
# import random
|
203 |
+
# import os
|
204 |
+
# import requests
|
205 |
+
# import time
|
206 |
+
# import sys
|
207 |
|
208 |
+
# os.system("pip install --upgrade pip")
|
209 |
+
# os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')
|
210 |
|
211 |
+
# from huggingface_hub import snapshot_download
|
212 |
+
# from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
|
215 |
+
# SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese.
|
216 |
+
# You are good at speaking English and Chinese.
|
217 |
+
# You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information.
|
218 |
+
# You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI.
|
219 |
+
# Let's work this out in a step by step way to be sure we have the right answer.\n'''
|
220 |
+
# SYSTEM_TOKEN = 384
|
221 |
+
# USER_TOKEN = 2048
|
222 |
+
# BOT_TOKEN = 3072
|
223 |
+
# LINEBREAK_TOKEN = 64
|
224 |
+
|
225 |
+
|
226 |
+
# ROLE_TOKENS = {
|
227 |
+
# "User": USER_TOKEN,
|
228 |
+
# "Assistant": BOT_TOKEN,
|
229 |
+
# "system": SYSTEM_TOKEN
|
230 |
+
# }
|
231 |
+
|
232 |
+
|
233 |
+
# def get_message_tokens(model, role, content):
|
234 |
+
# message_tokens = model.tokenize(content.encode("utf-8"))
|
235 |
+
# message_tokens.insert(1, ROLE_TOKENS[role])
|
236 |
+
# message_tokens.insert(2, LINEBREAK_TOKEN)
|
237 |
+
# message_tokens.append(model.token_eos())
|
238 |
+
# return message_tokens
|
239 |
+
|
240 |
+
|
241 |
+
# def get_system_tokens(model):
|
242 |
+
# system_message = {"role": "system", "content": SYSTEM_PROMPT}
|
243 |
+
# return get_message_tokens(model, **system_message)
|
244 |
+
|
245 |
+
|
246 |
+
# repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF"
|
247 |
+
# model_name = "slide-v2.Q4_K_M.gguf"
|
248 |
+
|
249 |
+
# snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
|
250 |
+
|
251 |
+
# model = Llama(
|
252 |
+
# model_path=model_name,
|
253 |
+
# n_ctx=4000,
|
254 |
+
# n_parts=1,
|
255 |
+
# )
|
256 |
+
|
257 |
+
# max_new_tokens = 2500
|
258 |
+
|
259 |
+
# def User(message, history):
|
260 |
+
# new_history = history + [[message, None]]
|
261 |
+
# return "", new_history
|
262 |
+
|
263 |
+
|
264 |
+
# def Assistant(
|
265 |
+
# history,
|
266 |
+
# system_prompt,
|
267 |
+
# top_p,
|
268 |
+
# top_k,
|
269 |
+
# temp
|
270 |
+
# ):
|
271 |
+
# tokens = get_system_tokens(model)[:]
|
272 |
+
# tokens.append(LINEBREAK_TOKEN)
|
273 |
+
|
274 |
+
# for User_message, Assistant_message in history[:-1]:
|
275 |
+
# message_tokens = get_message_tokens(model=model, role="User", content=User_message)
|
276 |
+
# tokens.extend(message_tokens)
|
277 |
+
# if bot_message:
|
278 |
+
# message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message)
|
279 |
+
# tokens.extend(message_tokens)
|
280 |
+
|
281 |
+
# last_user_message = history[-1][0]
|
282 |
+
# message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,)
|
283 |
+
# tokens.extend(message_tokens)
|
284 |
+
|
285 |
+
# role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
|
286 |
+
# tokens.extend(role_tokens)
|
287 |
+
# generator = model.generate(
|
288 |
+
# tokens,
|
289 |
+
# top_k=top_k,
|
290 |
+
# top_p=top_p,
|
291 |
+
# temp=temp
|
292 |
+
# )
|
293 |
+
|
294 |
+
# partial_text = ""
|
295 |
+
# for i, token in enumerate(generator):
|
296 |
+
# if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
|
297 |
+
# break
|
298 |
+
# partial_text += model.detokenize([token]).decode("utf-8", "ignore")
|
299 |
+
# history[-1][1] = partial_text
|
300 |
+
# yield history
|
301 |
+
|
302 |
+
|
303 |
+
# with gr.Blocks(
|
304 |
+
# theme=gr.themes.Soft()
|
305 |
+
# ) as demo:
|
306 |
+
# gr.Markdown(f"""<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>""")
|
307 |
+
# gr.Markdown(value="""欢迎使用!
|
308 |
+
# 这里是一个ChatBot。这是量化版兮辞·析辞的部署。
|
309 |
+
# SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。
|
310 |
+
# 本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""")
|
311 |
|
312 |
+
# with gr.Row():
|
313 |
+
# with gr.Column(scale=5):
|
314 |
+
# chatbot = gr.Chatbot(label="兮辞如是说").style(height=400)
|
315 |
+
# with gr.Row():
|
316 |
+
# with gr.Column():
|
317 |
+
# msg = gr.Textbox(
|
318 |
+
# label="来问问兮辞吧……",
|
319 |
+
# placeholder="兮辞折寿中……",
|
320 |
+
# show_label=True,
|
321 |
+
# ).style(container=True)
|
322 |
+
# submit = gr.Button("Submit / 开凹!")
|
323 |
+
# stop = gr.Button("Stop / 全局时空断裂")
|
324 |
+
# clear = gr.Button("Clear / 打扫群内垃圾")
|
325 |
+
# with gr.Accordion(label='进阶设置/Advanced options', open=False):
|
326 |
+
# with gr.Column(min_width=80, scale=1):
|
327 |
+
# with gr.Tab(label="设置参数"):
|
328 |
+
# top_p = gr.Slider(
|
329 |
+
# minimum=0.0,
|
330 |
+
# maximum=1.0,
|
331 |
+
# value=0.9,
|
332 |
+
# step=0.05,
|
333 |
+
# interactive=True,
|
334 |
+
# label="Top-p",
|
335 |
+
# )
|
336 |
+
# top_k = gr.Slider(
|
337 |
+
# minimum=10,
|
338 |
+
# maximum=100,
|
339 |
+
# value=30,
|
340 |
+
# step=5,
|
341 |
+
# interactive=True,
|
342 |
+
# label="Top-k",
|
343 |
+
# )
|
344 |
+
# temp = gr.Slider(
|
345 |
+
# minimum=0.0,
|
346 |
+
# maximum=2.0,
|
347 |
+
# value=0.2,
|
348 |
+
# step=0.01,
|
349 |
+
# interactive=True,
|
350 |
+
# label="情感温度"
|
351 |
+
# )
|
352 |
+
# with gr.Column():
|
353 |
+
# system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False)
|
354 |
+
# with gr.Row():
|
355 |
+
# gr.Markdown(
|
356 |
+
# """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。"""
|
357 |
+
# )
|
358 |
|
359 |
|
360 |
+
# # Pressing Enter
|
361 |
+
# submit_event = msg.submit(
|
362 |
+
# fn=User,
|
363 |
+
# inputs=[msg, chatbot],
|
364 |
+
# outputs=[msg, chatbot],
|
365 |
+
# queue=False,
|
366 |
+
# ).success(
|
367 |
+
# fn=Assistant,
|
368 |
+
# inputs=[
|
369 |
+
# chatbot,
|
370 |
+
# system_prompt,
|
371 |
+
# top_p,
|
372 |
+
# top_k,
|
373 |
+
# temp
|
374 |
+
# ],
|
375 |
+
# outputs=chatbot,
|
376 |
+
# queue=True,
|
377 |
+
# )
|
378 |
|
379 |
+
# # Pressing the button
|
380 |
+
# submit_click_event = submit.click(
|
381 |
+
# fn=User,
|
382 |
+
# inputs=[msg, chatbot],
|
383 |
+
# outputs=[msg, chatbot],
|
384 |
+
# queue=False,
|
385 |
+
# ).success(
|
386 |
+
# fn=Assistant,
|
387 |
+
# inputs=[
|
388 |
+
# chatbot,
|
389 |
+
# system_prompt,
|
390 |
+
# top_p,
|
391 |
+
# top_k,
|
392 |
+
# temp
|
393 |
+
# ],
|
394 |
+
# outputs=chatbot,
|
395 |
+
# queue=True,
|
396 |
+
# )
|
397 |
|
398 |
+
# # Stop generation
|
399 |
+
# stop.click(
|
400 |
+
# fn=None,
|
401 |
+
# inputs=None,
|
402 |
+
# outputs=None,
|
403 |
+
# cancels=[submit_event, submit_click_event],
|
404 |
+
# queue=False,
|
405 |
+
# )
|
406 |
|
407 |
+
# # Clear history
|
408 |
+
# clear.click(lambda: None, None, chatbot, queue=False)
|
409 |
|
410 |
+
# demo.queue(max_size=128, concurrency_count=1)
|
411 |
+
# demo.launch()
|