ffreemt
Set cache examples=False
ec833bc
raw
history blame
5.96 kB
from __future__ import annotations
import os
import time
from typing import Iterable
import gradio as gr
import pynvml
# import torch
from ctransformers import AutoModelForCausalLM
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from huggingface_hub import hf_hub_download # snapshot_download,
from loguru import logger
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore
logger.debug(f"Timezone set to {os.environ['TZ']=}")
except AttributeError:
... # Windows
repo_id = "TheBloke/openbuddy-mistral-7B-v13-GGUF"
filename = "openbuddy-mistral-7b-v13.Q4_K_S.gguf" # 4.17G
logger.debug("Start dl")
try:
model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision="main")
except Exception as exc:
logger.error(exc)
raise SystemExit("hf acting up, can't donwload the model, exiting")
logger.debug("Done dl")
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
# model = AutoModelForCausalLM.from_pretrained("TheBloke/openbuddy-mistral-7B-v13-GGUF", model_file="openbuddy-mistral-7b-v13.Q4_K_S.gguf", model_type="mistral", gpu_layers=0)
has_cuda = False
try:
pynvml.nvmlInit()
has_cuda = True
logger.debug("has cuda")
except pynvml.nvml.NVMLError_LibraryNotFound: # type: ignore
logger.debug("no cuda")
# if torch.cuda.is_available():
if has_cuda:
gpu_layers = 50 # set to what you like for GPU
else:
gpu_layers = 0
logger.debug("Start loading the model")
model = AutoModelForCausalLM.from_pretrained(
model_path, model_type="mistral", gpu_layers=gpu_layers
)
logger.debug("Done loading the model")
ins = """[INST] <<FRIDAY>>
Remember that your English name is "Shi-Ci" and your name in Chinese is "兮辞". You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</FRIDAY>>
{} [/INST]
"""
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[
gr.themes.GoogleFont("Open Sans"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
)
def response(question):
res = model(ins.format(question))
yield res
examples = ["Hello!"]
def process_example(args):
x = None
for x in response(args):
pass
return x
css = ".generating {visibility: hidden}"
# Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo
class SeafoamCustom(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.blue,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
"""Init."""
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
font=font,
font_mono=font_mono,
)
super().set(
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
input_background_fill="zinc",
input_border_color="*secondary_300",
input_shadow="*shadow_drop",
input_shadow_focus="*shadow_drop_lg",
)
seafoam = SeafoamCustom()
with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
""" ## Testrun
Type in the box below and click the button to generate answers to your most pressing questions!
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(
placeholder="Enter your question here",
label="Question",
elem_id="q-input",
)
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
# cache_examples=True,
cache_examples=False,
fn=process_example,
outputs=[output],
)
submit.click(response, inputs=[instruction], outputs=[output])
instruction.submit(response, inputs=[instruction], outputs=[output])
demo.queue(concurrency_count=1, max_size=5).launch(debug=False, share=True)