from __future__ import annotations from typing import Iterable import gradio as gr import torch from ctransformers import AutoModelForCausalLM from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes from huggingface_hub import hf_hub_download # snapshot_download, repo_id = 'TheBloke/openbuddy-mistral-7B-v13-GGUF' filename = 'openbuddy-mistral-7b-v13.Q4_K_S.gguf' # 4.17G model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision="main") # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. # model = AutoModelForCausalLM.from_pretrained("TheBloke/openbuddy-mistral-7B-v13-GGUF", model_file="openbuddy-mistral-7b-v13.Q4_K_S.gguf", model_type="mistral", gpu_layers=0) if torch.cuda.is_available(): gpu_layers = 50 # set to what you like for GPU else: gpu_layers = 0 model = AutoModelForCausalLM.from_pretrained(model_path, model_type="mistral", gpu_layers=gpu_layers) ins = '''[INST] <> Remember that your English name is "Shi-Ci" and your name in Chinese is "兮辞". You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <> {} [/INST] ''' theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], ) def response(question): res = model(ins.format(question)) yield res examples = [ "Hello!" ] def process_example(args): for x in response(args): pass return x css = ".generating {visibility: hidden}" # Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo class SeafoamCustom(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.emerald, secondary_hue: colors.Color | str = colors.blue, neutral_hue: colors.Color | str = colors.blue, spacing_size: sizes.Size | str = sizes.spacing_md, radius_size: sizes.Size | str = sizes.radius_md, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Quicksand"), "ui-sans-serif", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): """Init.""" super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, spacing_size=spacing_size, radius_size=radius_size, font=font, font_mono=font_mono, ) super().set( button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", button_primary_text_color="white", button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", block_shadow="*shadow_drop_lg", button_shadow="*shadow_drop_lg", input_background_fill="zinc", input_border_color="*secondary_300", input_shadow="*shadow_drop", input_shadow_focus="*shadow_drop_lg", ) seafoam = SeafoamCustom() with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown( """ ## Shi-Ci Extensional Analyzer Type in the box below and click the button to generate answers to your most pressing questions! """ ) with gr.Row(): with gr.Column(scale=3): instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") with gr.Box(): gr.Markdown("**Answer**") output = gr.Markdown(elem_id="q-output") submit = gr.Button("Generate", variant="primary") gr.Examples( examples=examples, inputs=[instruction], cache_examples=True, fn=process_example, outputs=[output], ) submit.click(response, inputs=[instruction], outputs=[output]) instruction.submit(response, inputs=[instruction], outputs=[output]) demo.queue(concurrency_count=1).launch(debug=False,share=True)