File size: 7,058 Bytes
7e0376e
 
5a25b6c
 
7e0376e
 
 
 
 
 
5a25b6c
7e0376e
 
a9e44d5
7e0376e
5a25b6c
 
7e0376e
 
 
5a483b6
a9e44d5
 
b88f82b
 
a9e44d5
 
 
 
 
 
 
8c621cb
a9e44d5
 
 
 
b88f82b
 
a9e44d5
b88f82b
a9e44d5
 
b88f82b
a9e44d5
b88f82b
c873cdd
a9e44d5
 
 
 
 
 
 
 
0b6b43b
9fdb144
a9e44d5
 
 
7e0376e
 
 
 
 
 
 
 
 
 
db20d3e
7e0376e
 
 
 
 
 
 
 
 
 
23e4ec1
7e0376e
 
 
 
 
 
 
23e4ec1
 
7e0376e
 
 
23e4ec1
7e0376e
 
 
 
 
5a25b6c
0b6b43b
7e0376e
0b6b43b
b88f82b
0b6b43b
 
 
 
 
 
 
 
 
7e0376e
a9e44d5
 
0b6b43b
 
7e0376e
 
a9e44d5
7e0376e
 
 
 
 
23e4ec1
7e0376e
23e4ec1
7e0376e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b6b43b
 
 
 
 
 
 
7e0376e
 
 
0b6b43b
 
 
 
 
 
 
 
 
7e0376e
 
0b6b43b
a9e44d5
 
 
 
 
 
0b6b43b
a9e44d5
 
 
 
 
7e0376e
 
 
 
 
 
0b6b43b
 
7e0376e
 
78efa10
7e0376e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import logging
import os
import shlex
import subprocess
import tempfile
import time

import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial

subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation


HEADER = """
# TripoSR Demo
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0"  width="450">
<tr style="height:50px;">
<td style="text-align: center;">
<a href="https://stability.ai">
<img src="https://images.squarespace-cdn.com/content/v1/6213c340453c3f502425776e/6c9c4c25-5410-4547-bc26-dc621cdacb25/Stability+AI+logo.png" width="200" height="40" />
</a>
</td>
<td style="text-align: center;">
<a href="https://www.tripo3d.ai">
<img src="https://tripo-public.cdn.bcebos.com/logo.png" width="40" height="40" />
</a>
</td>
</tr>
</table>
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0"  width="450">
<tr style="height:30px;">
<td style="text-align: center;">
<a href="https://huggingface.co/stabilityai/TripoSR"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"></a>
</td>
<td style="text-align: center;">
<a href="https://github.com/VAST-AI-Research/TripoSR"><img src="https://postimage.me/images/2024/03/04/GitHub_Logo_White.png" width="100" height="20"></a>
</td>
<td style="text-align: center; color: white;">
<a href="https://arxiv.org/abs/2403.02151"><img src="https://img.shields.io/badge/arXiv-2403.02151-b31b1b.svg" height="20"></a>
</td>
</tr>
</table>

**TripoSR** is a state-of-the-art open-source model for **fast** feedforward 3D reconstruction from a single image, developed in collaboration between [Tripo AI](https://www.tripo3d.ai/) and [Stability AI](https://stability.ai/).

**Tips:**
1. If you find the result is unsatisfied, please try to change the foreground ratio. It might improve the results.
2. It's better to disable "Remove Background" for the provided examples since they have been already preprocessed.
3. Otherwise, please disable "Remove Background" option only if your input image is RGBA with transparent background, image contents are centered and occupy more than 70% of image width or height.
"""


if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image


@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
    mesh = to_gradio_3d_orientation(mesh)

    mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
    mesh.export(mesh_path_glb.name)

    mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
    mesh.apply_scale([-1, 1, 1])  # Otherwise the visualized .obj will be flipped
    mesh.export(mesh_path_obj.name)
    
    return mesh_path_obj.name, mesh_path_glb.name

def run_example(image_pil):
    preprocessed = preprocess(image_pil, False, 0.9)
    mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
    return preprocessed, mesh_name_obj, mesh_name_glb

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(label="Processed Image", interactive=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
                    mc_resolution = gr.Slider(
                        label="Marching Cubes Resolution",
                        minimum=32,
                        maximum=320,
                        value=256,
                        step=32
                     )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("OBJ"):
                output_model_obj = gr.Model3D(
                    label="Output Model (OBJ Format)",
                    interactive=False,
                )
                gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
            with gr.Tab("GLB"):
                output_model_glb = gr.Model3D(
                    label="Output Model (GLB Format)",
                    interactive=False,
                )
                gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
    with gr.Row(variant="panel"):
        gr.Examples(
            examples=[
                os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
            ],
            inputs=[input_image],
            outputs=[processed_image, output_model_obj, output_model_glb],
            cache_examples=True,
            fn=partial(run_example),
            label="Examples",
            examples_per_page=20
        )
    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background, foreground_ratio],
        outputs=[processed_image],
    ).success(
        fn=generate,
        inputs=[processed_image, mc_resolution],
        outputs=[output_model_obj, output_model_glb],
    )

demo.queue(max_size=10)
demo.launch()