|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ...utils import BaseModule |
|
from .basic_transformer_block import BasicTransformerBlock |
|
|
|
|
|
class Transformer1D(BaseModule): |
|
""" |
|
A 1D Transformer model for sequence data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. |
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
""" |
|
|
|
@dataclass |
|
class Config(BaseModule.Config): |
|
num_attention_heads: int = 16 |
|
attention_head_dim: int = 88 |
|
in_channels: Optional[int] = None |
|
out_channels: Optional[int] = None |
|
num_layers: int = 1 |
|
dropout: float = 0.0 |
|
norm_num_groups: int = 32 |
|
cross_attention_dim: Optional[int] = None |
|
attention_bias: bool = False |
|
activation_fn: str = "geglu" |
|
only_cross_attention: bool = False |
|
double_self_attention: bool = False |
|
upcast_attention: bool = False |
|
norm_type: str = "layer_norm" |
|
norm_elementwise_affine: bool = True |
|
gradient_checkpointing: bool = False |
|
|
|
cfg: Config |
|
|
|
def configure(self) -> None: |
|
self.num_attention_heads = self.cfg.num_attention_heads |
|
self.attention_head_dim = self.cfg.attention_head_dim |
|
inner_dim = self.num_attention_heads * self.attention_head_dim |
|
|
|
linear_cls = nn.Linear |
|
|
|
|
|
self.in_channels = self.cfg.in_channels |
|
|
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=self.cfg.norm_num_groups, |
|
num_channels=self.cfg.in_channels, |
|
eps=1e-6, |
|
affine=True, |
|
) |
|
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
self.num_attention_heads, |
|
self.attention_head_dim, |
|
dropout=self.cfg.dropout, |
|
cross_attention_dim=self.cfg.cross_attention_dim, |
|
activation_fn=self.cfg.activation_fn, |
|
attention_bias=self.cfg.attention_bias, |
|
only_cross_attention=self.cfg.only_cross_attention, |
|
double_self_attention=self.cfg.double_self_attention, |
|
upcast_attention=self.cfg.upcast_attention, |
|
norm_type=self.cfg.norm_type, |
|
norm_elementwise_affine=self.cfg.norm_elementwise_affine, |
|
) |
|
for d in range(self.cfg.num_layers) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = ( |
|
self.cfg.in_channels |
|
if self.cfg.out_channels is None |
|
else self.cfg.out_channels |
|
) |
|
|
|
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels) |
|
|
|
self.gradient_checkpointing = self.cfg.gradient_checkpointing |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
The [`Transformer1DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = ( |
|
1 - encoder_attention_mask.to(hidden_states.dtype) |
|
) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
batch, _, seq_len = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 1).reshape( |
|
batch, seq_len, inner_dim |
|
) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
if self.training and self.gradient_checkpointing: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
block, |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
use_reentrant=False, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, seq_len, inner_dim) |
|
.permute(0, 2, 1) |
|
.contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
|
|
return output |
|
|