File size: 7,870 Bytes
37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# modified from https://github.com/Profactor/continuous-remeshing
import time
import torch
import torch_scatter
from typing import Tuple
from mesh_reconstruction.remesh import calc_edge_length, calc_edges, calc_face_collapses, calc_face_normals, calc_vertex_normals, collapse_edges, flip_edges, pack, prepend_dummies, remove_dummies, split_edges
@torch.no_grad()
def remesh(
vertices_etc:torch.Tensor, #V,D
faces:torch.Tensor, #F,3 long
min_edgelen:torch.Tensor, #V
max_edgelen:torch.Tensor, #V
flip:bool,
max_vertices=1e6
):
# dummies
vertices_etc,faces = prepend_dummies(vertices_etc,faces)
vertices = vertices_etc[:,:3] #V,3
nan_tensor = torch.tensor([torch.nan],device=min_edgelen.device)
min_edgelen = torch.concat((nan_tensor,min_edgelen))
max_edgelen = torch.concat((nan_tensor,max_edgelen))
# collapse
edges,face_to_edge = calc_edges(faces) #E,2 F,3
edge_length = calc_edge_length(vertices,edges) #E
face_normals = calc_face_normals(vertices,faces,normalize=False) #F,3
vertex_normals = calc_vertex_normals(vertices,faces,face_normals) #V,3
face_collapse = calc_face_collapses(vertices,faces,edges,face_to_edge,edge_length,face_normals,vertex_normals,min_edgelen,area_ratio=0.5)
shortness = (1 - edge_length / min_edgelen[edges].mean(dim=-1)).clamp_min_(0) #e[0,1] 0...ok, 1...edgelen=0
priority = face_collapse.float() + shortness
vertices_etc,faces = collapse_edges(vertices_etc,faces,edges,priority)
# split
if vertices.shape[0]<max_vertices:
edges,face_to_edge = calc_edges(faces) #E,2 F,3
vertices = vertices_etc[:,:3] #V,3
edge_length = calc_edge_length(vertices,edges) #E
splits = edge_length > max_edgelen[edges].mean(dim=-1)
vertices_etc,faces = split_edges(vertices_etc,faces,edges,face_to_edge,splits,pack_faces=False)
vertices_etc,faces = pack(vertices_etc,faces)
vertices = vertices_etc[:,:3]
if flip:
edges,_,edge_to_face = calc_edges(faces,with_edge_to_face=True) #E,2 F,3
flip_edges(vertices,faces,edges,edge_to_face,with_border=False)
return remove_dummies(vertices_etc,faces)
def lerp_unbiased(a:torch.Tensor,b:torch.Tensor,weight:float,step:int):
"""lerp with adam's bias correction"""
c_prev = 1-weight**(step-1)
c = 1-weight**step
a_weight = weight*c_prev/c
b_weight = (1-weight)/c
a.mul_(a_weight).add_(b, alpha=b_weight)
class MeshOptimizer:
"""Use this like a pytorch Optimizer, but after calling opt.step(), do vertices,faces = opt.remesh()."""
def __init__(self,
vertices:torch.Tensor, #V,3
faces:torch.Tensor, #F,3
lr=0.3, #learning rate
betas=(0.8,0.8,0), #betas[0:2] are the same as in Adam, betas[2] may be used to time-smooth the relative velocity nu
gammas=(0,0,0), #optional spatial smoothing for m1,m2,nu, values between 0 (no smoothing) and 1 (max. smoothing)
nu_ref=0.3, #reference velocity for edge length controller
edge_len_lims=(.01,.15), #smallest and largest allowed reference edge length
edge_len_tol=.5, #edge length tolerance for split and collapse
gain=.2, #gain value for edge length controller
laplacian_weight=.02, #for laplacian smoothing/regularization
ramp=1, #learning rate ramp, actual ramp width is ramp/(1-betas[0])
grad_lim=10., #gradients are clipped to m1.abs()*grad_lim
remesh_interval=1, #larger intervals are faster but with worse mesh quality
local_edgelen=True, #set to False to use a global scalar reference edge length instead
):
self._vertices = vertices
self._faces = faces
self._lr = lr
self._betas = betas
self._gammas = gammas
self._nu_ref = nu_ref
self._edge_len_lims = edge_len_lims
self._edge_len_tol = edge_len_tol
self._gain = gain
self._laplacian_weight = laplacian_weight
self._ramp = ramp
self._grad_lim = grad_lim
self._remesh_interval = remesh_interval
self._local_edgelen = local_edgelen
self._step = 0
V = self._vertices.shape[0]
# prepare continuous tensor for all vertex-based data
self._vertices_etc = torch.zeros([V,9],device=vertices.device)
self._split_vertices_etc()
self.vertices.copy_(vertices) #initialize vertices
self._vertices.requires_grad_()
self._ref_len.fill_(edge_len_lims[1])
@property
def vertices(self):
return self._vertices
@property
def faces(self):
return self._faces
def _split_vertices_etc(self):
self._vertices = self._vertices_etc[:,:3]
self._m2 = self._vertices_etc[:,3]
self._nu = self._vertices_etc[:,4]
self._m1 = self._vertices_etc[:,5:8]
self._ref_len = self._vertices_etc[:,8]
with_gammas = any(g!=0 for g in self._gammas)
self._smooth = self._vertices_etc[:,:8] if with_gammas else self._vertices_etc[:,:3]
def zero_grad(self):
self._vertices.grad = None
@torch.no_grad()
def step(self):
eps = 1e-8
self._step += 1
# spatial smoothing
edges,_ = calc_edges(self._faces) #E,2
E = edges.shape[0]
edge_smooth = self._smooth[edges] #E,2,S
neighbor_smooth = torch.zeros_like(self._smooth) #V,S
torch_scatter.scatter_mean(src=edge_smooth.flip(dims=[1]).reshape(E*2,-1),index=edges.reshape(E*2,1),dim=0,out=neighbor_smooth)
#apply optional smoothing of m1,m2,nu
if self._gammas[0]:
self._m1.lerp_(neighbor_smooth[:,5:8],self._gammas[0])
if self._gammas[1]:
self._m2.lerp_(neighbor_smooth[:,3],self._gammas[1])
if self._gammas[2]:
self._nu.lerp_(neighbor_smooth[:,4],self._gammas[2])
#add laplace smoothing to gradients
laplace = self._vertices - neighbor_smooth[:,:3]
grad = torch.addcmul(self._vertices.grad, laplace, self._nu[:,None], value=self._laplacian_weight)
#gradient clipping
if self._step>1:
grad_lim = self._m1.abs().mul_(self._grad_lim)
grad.clamp_(min=-grad_lim,max=grad_lim)
# moment updates
lerp_unbiased(self._m1, grad, self._betas[0], self._step)
lerp_unbiased(self._m2, (grad**2).sum(dim=-1), self._betas[1], self._step)
velocity = self._m1 / self._m2[:,None].sqrt().add_(eps) #V,3
speed = velocity.norm(dim=-1) #V
if self._betas[2]:
lerp_unbiased(self._nu,speed,self._betas[2],self._step) #V
else:
self._nu.copy_(speed) #V
# update vertices
ramped_lr = self._lr * min(1,self._step * (1-self._betas[0]) / self._ramp)
self._vertices.add_(velocity * self._ref_len[:,None], alpha=-ramped_lr)
# update target edge length
if self._step % self._remesh_interval == 0:
if self._local_edgelen:
len_change = (1 + (self._nu - self._nu_ref) * self._gain)
else:
len_change = (1 + (self._nu.mean() - self._nu_ref) * self._gain)
self._ref_len *= len_change
self._ref_len.clamp_(*self._edge_len_lims)
def remesh(self, flip:bool=True, poisson=False)->Tuple[torch.Tensor,torch.Tensor]:
min_edge_len = self._ref_len * (1 - self._edge_len_tol)
max_edge_len = self._ref_len * (1 + self._edge_len_tol)
self._vertices_etc,self._faces = remesh(self._vertices_etc,self._faces,min_edge_len,max_edge_len,flip, max_vertices=1e6)
self._split_vertices_etc()
self._vertices.requires_grad_()
return self._vertices, self._faces
|