import os from threading import Thread from typing import Iterator import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8000")) DESCRIPTION = """\ # ConvAI 9b v2 Chat """ # Load model with appropriate device configuration def load_model(): model_id = "CreitinGameplays/dumbbot" device = "cuda" if torch.cuda.is_available() else "cpu" # If using CPU, load in 32-bit to avoid potential issues with 16-bit operations if device == "cpu": model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float32, low_cpu_mem_usage=True ) else: model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side='left') tokenizer.use_default_system_prompt = False return model, tokenizer, device model, tokenizer, device = load_model() system_prompt_text = "You are Ricardinho." def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str = system_prompt_text, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6, value=system_prompt_text), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=1.0, ), gr.Slider( label="Top-k", minimum=0, maximum=1000, step=1, value=0, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], ) with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=10).launch(show_error=True)