Cristiants commited on
Commit
8f128da
β€’
1 Parent(s): 15a56bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -11
app.py CHANGED
@@ -10,23 +10,24 @@ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  model.to(device)
12
 
13
- def predict(inp):
14
- inp = transforms.ToTensor()(inp).unsqueeze(0)
15
- with torch.no_grad():
16
- prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
17
- confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
18
- return confidences
19
 
20
- demo = gr.Interface(fn=predict,
21
- inputs=gr.inputs.Image(type="pil"),
22
- outputs=gr.outputs.Label(num_top_classes=3)
23
- )
24
 
25
  def predict(imageurl):
 
26
  inputs = processor(image, return_tensors="pt")
27
  generated_ids = model.generate(**inputs, max_new_tokens=20)
28
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
29
- return('caption: '+generated_text)
30
 
31
  demo = gr.Interface(fn=predict,
32
  inputs="text",
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  model.to(device)
12
 
13
+ # def predict(inp):
14
+ # inp = transforms.ToTensor()(inp).unsqueeze(0)
15
+ # with torch.no_grad():
16
+ # prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
17
+ # confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
18
+ # return confidences
19
 
20
+ # demo = gr.Interface(fn=predict,
21
+ # inputs=gr.inputs.Image(type="pil"),
22
+ # outputs=gr.outputs.Label(num_top_classes=3)
23
+ # )
24
 
25
  def predict(imageurl):
26
+ image = Image.open(requests.get(imageurl, stream=True).raw).convert('RGB')
27
  inputs = processor(image, return_tensors="pt")
28
  generated_ids = model.generate(**inputs, max_new_tokens=20)
29
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
30
+ return('caption: '+generated_text)
31
 
32
  demo = gr.Interface(fn=predict,
33
  inputs="text",