Spaces:
Runtime error
Runtime error
Cristiants
commited on
Commit
Β·
9b57564
1
Parent(s):
b9cb95c
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,13 @@
|
|
1 |
-
import sys
|
2 |
-
# if 'google.colab' in sys.modules:
|
3 |
-
# print('Running in Colab.')
|
4 |
-
# !pip3 install transformers==4.15.0 timm==0.4.12 fairscale==0.4.4
|
5 |
-
# !git clone https://github.com/salesforce/BLIP
|
6 |
-
# %cd BLIP
|
7 |
-
import gradio as gr
|
8 |
-
import torch
|
9 |
import requests
|
10 |
-
from torchvision import transforms
|
11 |
from PIL import Image
|
12 |
-
import
|
13 |
import torch
|
14 |
-
from torchvision import transforms
|
15 |
-
from torchvision.transforms.functional import InterpolationMode
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
labels = response.text.split("\n")
|
24 |
|
25 |
def predict(inp):
|
26 |
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
@@ -34,38 +21,11 @@ demo = gr.Interface(fn=predict,
|
|
34 |
outputs=gr.outputs.Label(num_top_classes=3)
|
35 |
)
|
36 |
|
37 |
-
def load_demo_image(image_size,device,imageurl):
|
38 |
-
img_url = imageurl
|
39 |
-
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
40 |
-
|
41 |
-
w,h = raw_image.size
|
42 |
-
display(raw_image.resize((w//5,h//5)))
|
43 |
-
|
44 |
-
transform = transforms.Compose([
|
45 |
-
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
46 |
-
transforms.ToTensor(),
|
47 |
-
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
48 |
-
])
|
49 |
-
image = transform(raw_image).unsqueeze(0).to(device)
|
50 |
-
return image
|
51 |
-
from models.blip import blip_decoder
|
52 |
-
|
53 |
def predict(imageurl):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base')
|
60 |
-
model.eval()
|
61 |
-
model = model.to(device)
|
62 |
-
|
63 |
-
with torch.no_grad():
|
64 |
-
# beam search
|
65 |
-
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
|
66 |
-
# nucleus sampling
|
67 |
-
# caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)
|
68 |
-
return('caption: '+caption[0])
|
69 |
|
70 |
demo = gr.Interface(fn=predict,
|
71 |
inputs="text",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
|
|
2 |
from PIL import Image
|
3 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
4 |
import torch
|
|
|
|
|
|
|
5 |
|
6 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
7 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
|
8 |
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model.to(device)
|
|
|
11 |
|
12 |
def predict(inp):
|
13 |
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
|
|
21 |
outputs=gr.outputs.Label(num_top_classes=3)
|
22 |
)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def predict(imageurl):
|
25 |
+
inputs = processor(image, return_tensors="pt")
|
26 |
+
generated_ids = model.generate(**inputs, max_new_tokens=20)
|
27 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
28 |
+
return('caption: '+generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
demo = gr.Interface(fn=predict,
|
31 |
inputs="text",
|