import requests from PIL import Image from transformers import AutoProcessor, Blip2ForConditionalGeneration import torch import gradio as gr processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def predict(inp): inp = transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Label(num_top_classes=3) ) def predict(imageurl): inputs = processor(image, return_tensors="pt") generated_ids = model.generate(**inputs, max_new_tokens=20) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return('caption: '+generated_text) demo = gr.Interface(fn=predict, inputs="text", outputs=gr.outputs.Label(num_top_classes=3) ) demo.launch()