Spaces:
Runtime error
Runtime error
Joseph Catrambone
commited on
Commit
•
d491fdb
1
Parent(s):
a1a7f32
Automatically scale input images to 512x512 with center crop if they're non-square.
Browse files
app.py
CHANGED
@@ -24,9 +24,21 @@ ddim_sampler = DDIMSampler(model) # ControlNet _only_ works with DDIM.
|
|
24 |
|
25 |
def process(input_image: Image.Image, prompt, a_prompt, n_prompt, max_faces: int, min_confidence: float, num_samples, ddim_steps, guess_mode, strength, scale, seed: int, eta):
|
26 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
empty = generate_annotation(input_image, max_faces, min_confidence)
|
28 |
visualization = Image.fromarray(empty) # Save to help debug.
|
29 |
|
|
|
30 |
empty = numpy.moveaxis(empty, 2, 0) # h, w, c -> c, h, w
|
31 |
control = torch.from_numpy(empty.copy()).float().to(device) / 255.0
|
32 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
@@ -81,7 +93,7 @@ with block:
|
|
81 |
gr.Markdown("## Control Stable Diffusion with a Facial Pose")
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
-
input_image = gr.Image(source='upload', type="
|
85 |
prompt = gr.Textbox(label="Prompt")
|
86 |
run_button = gr.Button(label="Run")
|
87 |
with gr.Accordion("Advanced options", open=False):
|
|
|
24 |
|
25 |
def process(input_image: Image.Image, prompt, a_prompt, n_prompt, max_faces: int, min_confidence: float, num_samples, ddim_steps, guess_mode, strength, scale, seed: int, eta):
|
26 |
with torch.no_grad():
|
27 |
+
# Scale to 512x512.
|
28 |
+
img_size = input_image.size
|
29 |
+
scale_factor = 512/min(img_size)
|
30 |
+
input_image = input_image.resize((1+int(img_size[0]*scale_factor), 1+int(img_size[1]*scale_factor)))
|
31 |
+
img_size = input_image.size
|
32 |
+
left_padding = (img_size[0] - 512)//2
|
33 |
+
top_padding = (img_size[1] - 512)//2
|
34 |
+
input_image = input_image.crop((left_padding, top_padding, left_padding+512, top_padding+512))
|
35 |
+
|
36 |
+
# Generate annotation
|
37 |
+
input_image = numpy.asarray(input_image)
|
38 |
empty = generate_annotation(input_image, max_faces, min_confidence)
|
39 |
visualization = Image.fromarray(empty) # Save to help debug.
|
40 |
|
41 |
+
# Prep for network:
|
42 |
empty = numpy.moveaxis(empty, 2, 0) # h, w, c -> c, h, w
|
43 |
control = torch.from_numpy(empty.copy()).float().to(device) / 255.0
|
44 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
|
|
93 |
gr.Markdown("## Control Stable Diffusion with a Facial Pose")
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
+
input_image = gr.Image(source='upload', type="pil")
|
97 |
prompt = gr.Textbox(label="Prompt")
|
98 |
run_button = gr.Button(label="Run")
|
99 |
with gr.Accordion("Advanced options", open=False):
|