import os import requests from markdownify import markdownify as md from requests.exceptions import RequestException import re from transformers.agents import ( ReactCodeAgent, ReactJsonAgent, HfApiEngine, ManagedAgent, stream_to_gradio, Tool, ) from transformers.agents.search import DuckDuckGoSearchTool import gradio as gr import datetime from huggingface_hub import login # Log in to Hugging Face hf_token = os.getenv("hf_token") login(hf_token) model = "meta-llama/Meta-Llama-3.1-70B-Instruct" # Define the VisitWebpageTool class VisitWebpageTool(Tool): name = "visit_webpage" description = "Visits a webpage at the given url and returns its content as a markdown string." inputs = { "url": { "type": "string", "description": "The url of the webpage to visit.", } } output_type = "text" def forward(self, url: str) -> str: try: response = requests.get(url) response.raise_for_status() markdown_content = md(response.text).strip() markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content) return markdown_content except RequestException as e: return f"Error fetching the webpage: {str(e)}" except Exception as e: return f"An unexpected error occurred: {str(e)}" visit_page_tool = VisitWebpageTool() # Set up the multi-agent system llm_engine = HfApiEngine(model) # Agent to clarify specifics clarify_agent = ReactJsonAgent( tools=[], llm_engine=llm_engine, max_iterations=20, ) # Agent to plan the project plan_agent = ReactJsonAgent( tools=[], llm_engine=llm_engine, max_iterations=20, ) # Agent to break the plan into tasks task_agent = ReactJsonAgent( tools=[], llm_engine=llm_engine, max_iterations=20, ) # Agent to execute tasks execute_agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, max_iterations=20, additional_authorized_imports=['requests', 'bs4'] ) # Agent to review code review_agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, max_iterations=20, additional_authorized_imports=['requests', 'bs4', 'transformers'] ) # Agent to revise code revise_agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, max_iterations=20, ) # Managed agents managed_clarify_agent = ManagedAgent( agent=clarify_agent, name="clarify_agent", description="Clarifies project specifics if not given in the project description.", ) managed_plan_agent = ManagedAgent( agent=plan_agent, name="plan_agent", description="Plans the project.", ) managed_task_agent = ManagedAgent( agent=task_agent, name="task_agent", description="Breaks the plan into tasks.", ) managed_execute_agent = ManagedAgent( agent=execute_agent, name="execute_agent", description="Executes the tasks.", ) managed_review_agent = ManagedAgent( agent=review_agent, name="review_agent", description="Reviews the code written in completion of tasks.", ) managed_revise_agent = ManagedAgent( agent=revise_agent, name="revise_agent", description="Revises the code if needed.", ) # Manager agent manager_agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, managed_agents=[ managed_clarify_agent, managed_plan_agent, managed_task_agent, managed_execute_agent, managed_review_agent, managed_revise_agent, ], additional_authorized_imports=["time", "datetime"], ) # Implement the Gradio interface def interact_with_agent(task): messages = [] messages.append(gr.ChatMessage(role="user", content=task)) yield messages try: for msg in stream_to_gradio(manager_agent, task): messages.append(msg) yield messages + [ gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!") ] except Exception as e: messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}")) yield messages with gr.Blocks() as demo: gr.Markdown("# Multi-agent Software Team") gr.Markdown("Gradio space based on the multiagent_web_assistant cookbook https://huggingface.co/learn/cookbook/multiagent_web_assistant") text_input = gr.Textbox(lines=1, label="Project Description", value="Create a simple web app that allows users to upload images and apply filters.") submit = gr.Button("Start Project Development") chatbot = gr.Chatbot( label="Agent", type="messages", avatar_images=( None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png", ), ) submit.click(interact_with_agent, [text_input], [chatbot]) if __name__ == "__main__": demo.launch(share=True)