Spaces:
Sleeping
Sleeping
File size: 3,396 Bytes
6a8ca1f 04fc1f1 6a8ca1f e9cc0b5 6a8ca1f de50a7e 04fc1f1 ee5e19e e27d897 db2ea29 ee5e19e e27d897 ee5e19e db2ea29 471f9af 576d10c db2ea29 471f9af db2ea29 6a8ca1f e27d897 8a8a62b e27d897 8a8a62b db2ea29 6a8ca1f ee5e19e 471f9af fefde70 6a8ca1f 69cfbe8 e9ecb71 69cfbe8 6a8ca1f 471f9af 6a8ca1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import spaces
import torch
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
if torch.cuda.is_available():
device, dtype = "cuda", torch.float16
else:
device, dtype = "cpu", torch.float32
model_id = "vikhyatk/moondream2"
revision = "2024-04-02"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
moondream = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype
).to(device=device)
moondream.eval()
@spaces.GPU
def answer_questions(image_tuples, prompt_text):
result = ""
prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts
print(f"prompts\n{prompts}\n")
image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None
# Check if the lengths of image_embeds and prompts are equal
#if len(image_embeds) != len(prompts):
#return ("Error: The number of images input and prompts input (seperate by commas in input text field) must be the same.")
answers = []
for prompt in prompts:
image_answers = moondream.batch_answer(
images=[img.convert("RGB") for img in image_embeds],
prompts=[prompt] * len(image_embeds),
tokenizer=tokenizer,
)
answers.append(image_answers)
data = []
for i in range(len(image_tuples)):
image_name = f"image{i+1}"
image_answers = [answer[i] for answer in answers]
print(f"image{i+1}_answers \n {image_answers} \n")
data.append([image_name] + image_answers)
for question, answer in zip(prompts, answers):
Q_and_A += (f"Q: {question}\nA: {answer}\n\n")
print(f"\n\n{Q_and_A}\n\n")
result = {'headers': prompts, 'data': data}
return result
'''
answers = moondream.batch_answer(
images=image_embeds,
prompts=prompts,
tokenizer=tokenizer,
)
for question, answer in zip(prompts, answers):
result += (f"Q: {question}\nA: {answer}\n\n")
return result
'''
with gr.Blocks() as demo:
gr.Markdown("# moondream2 unofficial batch processing demo")
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each promp on each image**")
gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*")
gr.Markdown("## π moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
with gr.Row():
img = gr.Gallery(label="Upload Images", type="pil")
with gr.Row():
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8)
with gr.Row():
submit = gr.Button("Submit")
output = gr.TextArea(label="Questions and Answers", lines=30)
output2 = gr.Dataframe(label="Structured Dataframe", type="array",wrap=True)
submit.click(answer_questions, [img, prompt], output, output2)
demo.queue().launch()
|