Csplk commited on
Commit
07b2bd0
Β·
verified Β·
1 Parent(s): 724ea61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -29,33 +29,30 @@ def answer_questions(image_tuples, prompt_text):
29
  answers = []
30
 
31
  for prompt in prompts:
32
- thread = Thread(
33
- image_answers = moondream.batch_answer(
34
  images=[img.convert("RGB") for img in image_embeds],
35
  prompts=[prompt] * len(image_embeds),
36
- tokenizer=tokenizer,
37
- )
38
- answers.append(image_answers)
39
- )
40
  thread.start()
 
41
 
42
  for i, prompt in enumerate(prompts):
43
  Q_and_A += f"### Q: {prompt}\n"
44
  for j, image_tuple in enumerate(image_tuples):
45
  image_name = f"image{j+1}"
46
  answer_text = answers[i][j]
47
- Q_and_A += f"**{image_name} A:** \n {answer_text} \n\n"
48
 
49
  result = {'headers': prompts, 'data': answers}
50
- print(f"result\n{result}\n\nQ_and_A\n{Q_and_A}\n\n")
51
  return Q_and_A, result
52
 
53
  with gr.Blocks() as demo:
54
  gr.Markdown("# moondream2 unofficial batch processing demo")
55
  gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
56
- gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each promp on each image**")
57
  gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*")
58
- gr.Markdown("## πŸŒ” moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
59
  with gr.Row():
60
  img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4)
61
  with gr.Row():
@@ -66,6 +63,6 @@ with gr.Blocks() as demo:
66
  output = gr.Markdown(label="Questions and Answers", line_breaks=True)
67
  with gr.Row():
68
  output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True)
69
- submit.click(answer_questions, [img, prompt], [output, output2])
70
 
71
- demo.queue().launch()
 
29
  answers = []
30
 
31
  for prompt in prompts:
32
+ thread = Thread(target=lambda: answers.append(moondream.batch_answer(
 
33
  images=[img.convert("RGB") for img in image_embeds],
34
  prompts=[prompt] * len(image_embeds),
35
+ tokenizer=tokenizer)))
 
 
 
36
  thread.start()
37
+ thread.join()
38
 
39
  for i, prompt in enumerate(prompts):
40
  Q_and_A += f"### Q: {prompt}\n"
41
  for j, image_tuple in enumerate(image_tuples):
42
  image_name = f"image{j+1}"
43
  answer_text = answers[i][j]
44
+ Q_and_A += f"**{image_name} A:** \n {answer_text} \n"
45
 
46
  result = {'headers': prompts, 'data': answers}
47
+ print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
48
  return Q_and_A, result
49
 
50
  with gr.Blocks() as demo:
51
  gr.Markdown("# moondream2 unofficial batch processing demo")
52
  gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
53
+ gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each prompt on each image**")
54
  gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*")
55
+ gr.Markdown("A tiny vision language model. [moondream2](https://huggingface.co/vikhyatk/moondream2)")
56
  with gr.Row():
57
  img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4)
58
  with gr.Row():
 
63
  output = gr.Markdown(label="Questions and Answers", line_breaks=True)
64
  with gr.Row():
65
  output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True)
66
+ submit.click(answer_questions, inputs=[img, prompt], outputs=[output, output2])
67
 
68
+ demo.queue().launch()