CultriX commited on
Commit
e9dbd6f
·
verified ·
1 Parent(s): 15046f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -37
app.py CHANGED
@@ -1,38 +1,42 @@
1
  import streamlit as st
2
  import pandas as pd
3
- from huggingface_hub import HfApi
4
  from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
5
  import re
6
  from io import StringIO
7
  from yall import create_yall
8
  import plotly.graph_objs as go
9
- from huggingface_hub import ModelCard
10
 
11
  def calculate_pages(df, items_per_page):
 
12
  return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page)
13
 
14
  @st.cache_data
15
  def cached_model_info(_api, model):
 
16
  try:
17
  return _api.model_info(repo_id=str(model))
18
- except (RepositoryNotFoundError, RevisionNotFoundError):
 
19
  return None
20
 
21
  @st.cache_data
22
  def get_model_info(df):
 
23
  api = HfApi()
24
-
25
- for index, row in df.iterrows():
26
- model_info = cached_model_info(api, row['Model'].strip())
27
- if model_info:
28
- df.loc[index, 'Likes'] = model_info.likes
29
- df.loc[index, 'Tags'] = ', '.join(model_info.tags)
30
- else:
31
- df.loc[index, 'Likes'] = -1
32
- df.loc[index, 'Tags'] = ''
33
  return df
34
 
35
  def convert_markdown_table_to_dataframe(md_content):
 
36
  cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
37
  df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
38
  df = df.drop(0, axis=0)
@@ -43,46 +47,57 @@ def convert_markdown_table_to_dataframe(md_content):
43
  return df
44
 
45
  def create_bar_chart(df, category):
 
46
  st.write(f"### {category} Scores")
47
  sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
48
  fig = go.Figure(go.Bar(
49
  x=sorted_df[category],
50
  y=sorted_df['Model'],
51
  orientation='h',
52
- marker=dict(color=sorted_df[category], colorscale='Agsunset')
 
53
  ))
54
  fig.update_layout(
55
- margin=dict(l=20, r=20, t=20, b=20)
 
56
  )
57
  st.plotly_chart(fig, use_container_width=True, height=len(df) * 35)
58
 
59
  def fetch_merge_configs(df):
 
60
  df_sorted = df.sort_values(by='Average', ascending=False)
61
- with open('/tmp/configurations.txt', 'a') as file:
62
- for index, row in df_sorted.head(20).iterrows():
63
- model_name = row['Model'].rstrip()
64
- card = ModelCard.load(model_name)
65
- file.write(f'Model Name: {model_name}\n')
66
- file.write(f'Scores: {row["Average"]}\n')
67
- file.write(f'AGIEval: {row["AGIEval"]}\n')
68
- file.write(f'GPT4All: {row["GPT4All"]}\n')
69
- file.write(f'TruthfulQA: {row["TruthfulQA"]}\n')
70
- file.write(f'Bigbench: {row["Bigbench"]}\n')
71
- file.write(f'Model Card: {card}\n')
72
- with open('/tmp/configurations.txt', 'r') as file:
73
- content = file.read()
74
- matches = re.findall(r'yaml(.*?)```', content, re.DOTALL)
75
- with open('/tmp/configurations2.txt', 'w') as file:
76
- for row, match in zip(df_sorted[['Model', 'Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']].head(20).values, matches):
77
- file.write(f'Model Name: {row[0]}\n')
78
- file.write(f'Scores: {row[1]}\n')
79
- file.write(f'AGIEval: {row[2]}\n')
80
- file.write(f'GPT4All: {row[3]}\n')
81
- file.write(f'TruthfulQA: {row[4]}\n')
82
- file.write(f'Bigbench: {row[5]}\n')
83
- file.write('yaml' + match + '```\n')
 
 
 
 
 
 
84
 
85
  def main():
 
86
  st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
87
  st.title("🏆 YALL - Yet Another LLM Leaderboard")
88
  st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")
 
1
  import streamlit as st
2
  import pandas as pd
3
+ from huggingface_hub import HfApi, ModelCard
4
  from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
5
  import re
6
  from io import StringIO
7
  from yall import create_yall
8
  import plotly.graph_objs as go
 
9
 
10
  def calculate_pages(df, items_per_page):
11
+ """Calculate the number of pages needed for pagination."""
12
  return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page)
13
 
14
  @st.cache_data
15
  def cached_model_info(_api, model):
16
+ """Fetch model information from the Hugging Face API and cache the result."""
17
  try:
18
  return _api.model_info(repo_id=str(model))
19
+ except (RepositoryNotFoundError, RevisionNotFoundError) as e:
20
+ st.error(f"Error fetching model info for {model}: {str(e)}")
21
  return None
22
 
23
  @st.cache_data
24
  def get_model_info(df):
25
+ """Get model information and update the DataFrame with likes and tags."""
26
  api = HfApi()
27
+ with st.spinner("Fetching model information..."):
28
+ for index, row in df.iterrows():
29
+ model_info = cached_model_info(api, row['Model'].strip())
30
+ if model_info:
31
+ df.loc[index, 'Likes'] = model_info.likes
32
+ df.loc[index, 'Tags'] = ', '.join(model_info.tags)
33
+ else:
34
+ df.loc[index, 'Likes'] = -1
35
+ df.loc[index, 'Tags'] = ''
36
  return df
37
 
38
  def convert_markdown_table_to_dataframe(md_content):
39
+ """Convert a markdown table to a pandas DataFrame."""
40
  cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
41
  df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
42
  df = df.drop(0, axis=0)
 
47
  return df
48
 
49
  def create_bar_chart(df, category):
50
+ """Create a horizontal bar chart for the specified category."""
51
  st.write(f"### {category} Scores")
52
  sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
53
  fig = go.Figure(go.Bar(
54
  x=sorted_df[category],
55
  y=sorted_df['Model'],
56
  orientation='h',
57
+ marker=dict(color=sorted_df[category], colorscale='Viridis'),
58
+ hoverinfo='x+y'
59
  ))
60
  fig.update_layout(
61
+ margin=dict(l=20, r=20, t=20, b=20),
62
+ title=f"Leaderboard for {category} Scores"
63
  )
64
  st.plotly_chart(fig, use_container_width=True, height=len(df) * 35)
65
 
66
  def fetch_merge_configs(df):
67
+ """Fetch and save merge configurations for the top models."""
68
  df_sorted = df.sort_values(by='Average', ascending=False)
69
+ try:
70
+ with open('/tmp/configurations.txt', 'a') as file:
71
+ for index, row in df_sorted.head(20).iterrows():
72
+ model_name = row['Model'].rstrip()
73
+ try:
74
+ card = ModelCard.load(model_name)
75
+ file.write(f'Model Name: {model_name}\n')
76
+ file.write(f'Scores: {row["Average"]}\n')
77
+ file.write(f'AGIEval: {row["AGIEval"]}\n')
78
+ file.write(f'GPT4All: {row["GPT4All"]}\n')
79
+ file.write(f'TruthfulQA: {row["TruthfulQA"]}\n')
80
+ file.write(f'Bigbench: {row["Bigbench"]}\n')
81
+ file.write(f'Model Card: {card}\n')
82
+ except Exception as e:
83
+ st.error(f"Error loading model card for {model_name}: {str(e)}")
84
+ with open('/tmp/configurations.txt', 'r') as file:
85
+ content = file.read()
86
+ matches = re.findall(r'yaml(.*?)```', content, re.DOTALL)
87
+ with open('/tmp/configurations2.txt', 'w') as file:
88
+ for row, match in zip(df_sorted[['Model', 'Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']].head(20).values, matches):
89
+ file.write(f'Model Name: {row[0]}\n')
90
+ file.write(f'Scores: {row[1]}\n')
91
+ file.write(f'AGIEval: {row[2]}\n')
92
+ file.write(f'GPT4All: {row[3]}\n')
93
+ file.write(f'TruthfulQA: {row[4]}\n')
94
+ file.write(f'Bigbench: {row[5]}\n')
95
+ file.write('yaml' + match + '```\n')
96
+ except Exception as e:
97
+ st.error(f"Error while fetching merge configs: {str(e)}")
98
 
99
  def main():
100
+ """Main function to set up the Streamlit app and display the leaderboard."""
101
  st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
102
  st.title("🏆 YALL - Yet Another LLM Leaderboard")
103
  st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")