CultriX's picture
Update app.py
9a33663 verified
import os
import asyncio
import logging
import threading
import queue
import gradio as gr
import httpx
import time
import tempfile
from typing import Generator, Any, Dict, List, Optional
# -------------------- Configuration --------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# -------------------- External Model Call (with Caching and Retry) --------------------
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str:
if api_key is None:
api_key = os.getenv("OPENAI_API_KEY")
if api_key is None:
raise ValueError("OpenAI API key not provided.")
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
payload = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
}
for attempt in range(max_retries):
try:
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
response = await client.post(url, headers=headers, json=payload)
response.raise_for_status()
response_json = response.json()
return response_json["choices"][0]["message"]["content"]
except httpx.HTTPStatusError as e:
logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}")
if e.response.status_code in (502, 503, 504):
await asyncio.sleep(2 ** attempt)
continue
else:
raise
except httpx.RequestError as e:
logging.error(f"Request error (attempt {attempt + 1}/{max_retries}): {e}")
await asyncio.sleep(2 ** attempt)
continue
except Exception as e:
logging.error(f"Unexpected error (attempt {attempt+1}/{max_retries}): {e}")
raise
raise Exception(f"Failed to get response after {max_retries} attempts.")
# -------------------- Conversation History Conversion --------------------
def convert_history(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""
Convert our internal conversation history (with 'agent' and 'message')
into the Gradio messages format (with 'role' and 'content').
"""
converted = []
for entry in history:
if entry["agent"].lower() == "user":
converted.append({"role": "user", "content": entry["message"]})
else:
converted.append({"role": "assistant", "content": f'{entry["agent"]}: {entry["message"]}'})
return converted
def conversation_to_text(history: List[Dict[str, str]]) -> str:
"""
Convert the conversation history to a plain-text log.
"""
lines = []
for entry in history:
lines.append(f"{entry['agent']}: {entry['message']}")
return "\n".join(lines)
# -------------------- Shared Context --------------------
class Context:
def __init__(self, original_task: str, optimized_task: Optional[str] = None,
plan: Optional[str] = None, code: Optional[str] = None,
review_comments: Optional[List[Dict[str, str]]] = None,
test_cases: Optional[str] = None, test_results: Optional[str] = None,
documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None):
self.original_task = original_task
self.optimized_task = optimized_task
self.plan = plan
self.code = code
self.review_comments = review_comments or []
self.test_cases = test_cases
self.test_results = test_results
self.documentation = documentation
# Initialize with the user's task.
self.conversation_history = conversation_history or [{"agent": "User", "message": original_task}]
def add_conversation_entry(self, agent_name: str, message: str):
self.conversation_history.append({"agent": agent_name, "message": message})
# -------------------- Agent Classes --------------------
class PromptOptimizerAgent:
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
system_prompt = (
"Improve the prompt. Be clear, specific, and complete. "
"Keep original intent. Return ONLY the revised prompt."
)
full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}"
optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
context.optimized_task = optimized
context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}")
return context
class OrchestratorAgent:
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
self.log_queue = log_queue
self.human_event = human_event
self.human_input_queue = human_input_queue
async def generate_plan(self, context: Context, api_key: str) -> Context:
while True:
if context.plan:
prompt = (
f"You are a planner. Revise/complete the plan for '{context.original_task}'. "
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
else:
prompt = (
f"You are a planner. Create a plan for: '{context.optimized_task}'. "
"Break down the task and assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. "
"Include review/revision steps, error handling, and documentation instructions.\n\n"
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
self.log_queue.put(("update", context.conversation_history))
if "REQUEST_HUMAN_FEEDBACK" in plan:
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
self.log_queue.put(("[Orchestrator]", f"Requesting human feedback... Question: {question}"))
feedback_context = (
f"Task: {context.optimized_task}\nCurrent Plan: {context.plan or 'None'}\nQuestion: {question}"
)
self.human_event.set()
self.human_input_queue.put(feedback_context)
human_response = self.human_input_queue.get() # Blocking waiting for human response
self.human_event.clear()
self.log_queue.put(("[Orchestrator]", f"Received human feedback: {human_response}"))
context.plan = (context.plan + "\n" + human_response) if context.plan else human_response
else:
context.plan = plan
break
return context
class CoderAgent:
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
prompt = (
"You are a coding agent. Output ONLY the code. "
"Adhere to best practices and include error handling.\n\n"
f"Instructions:\n{context.plan}"
)
code = await call_model(prompt, model=model, api_key=api_key)
context.code = code
context.add_conversation_entry("Coder", f"Code:\n{code}")
return context
class CodeReviewerAgent:
async def review_code(self, context: Context, api_key: str) -> Context:
prompt = (
"You are a code reviewer. Provide CONCISE feedback focusing on correctness, efficiency, readability, error handling, and security. "
"If the code is acceptable, respond with ONLY 'APPROVE'. Do NOT generate code.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
if "APPROVE" not in review.upper():
structured_review = {"comments": []}
for line in review.splitlines():
if line.strip():
structured_review["comments"].append({
"issue": line.strip(),
"line_number": "N/A",
"severity": "Medium"
})
context.review_comments.append(structured_review)
return context
class QualityAssuranceTesterAgent:
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
prompt = (
"You are a testing agent. Generate comprehensive test cases considering edge cases and error scenarios. "
"Output in a clear format.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_cases = test_cases
context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}")
return context
async def run_tests(self, context: Context, api_key: str) -> Context:
prompt = (
"Run the test cases. Compare actual vs expected outputs and state any discrepancies. "
"If all tests pass, output 'TESTS PASSED'.\n\n"
f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}"
)
test_results = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_results = test_results
context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}")
return context
class DocumentationAgent:
async def generate_documentation(self, context: Context, api_key: str) -> Context:
prompt = (
"Generate clear documentation including a brief description, explanation, and a --help message.\n\n"
f"Code:\n{context.code}"
)
documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.documentation = documentation
context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}")
return context
# -------------------- Agent Dispatcher --------------------
class AgentDispatcher:
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
self.log_queue = log_queue
self.human_event = human_event
self.human_input_queue = human_input_queue
self.agents = {
"prompt_optimizer": PromptOptimizerAgent(),
"orchestrator": OrchestratorAgent(log_queue, human_event, human_input_queue),
"coder": CoderAgent(),
"code_reviewer": CodeReviewerAgent(),
"qa_tester": QualityAssuranceTesterAgent(),
"documentation_agent": DocumentationAgent(),
}
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
self.log_queue.put((f"[{agent_name.replace('_', ' ').title()}]", "Starting task..."))
if agent_name == "prompt_optimizer":
context = await self.agents[agent_name].optimize_prompt(context, api_key)
elif agent_name == "orchestrator":
context = await self.agents[agent_name].generate_plan(context, api_key)
elif agent_name == "coder":
context = await self.agents[agent_name].generate_code(context, api_key, **kwargs)
elif agent_name == "code_reviewer":
context = await self.agents[agent_name].review_code(context, api_key)
elif agent_name == "qa_tester":
if kwargs.get("generate_tests", False):
context = await self.agents[agent_name].generate_test_cases(context, api_key)
elif kwargs.get("run_tests", False):
context = await self.agents[agent_name].run_tests(context, api_key)
elif agent_name == "documentation_agent":
context = await self.agents[agent_name].generate_documentation(context, api_key)
else:
raise ValueError(f"Unknown agent: {agent_name}")
self.log_queue.put(("update", context.conversation_history))
return context
async def determine_next_agent(self, context: Context, api_key: str) -> str:
if not context.optimized_task:
return "prompt_optimizer"
if not context.plan:
return "orchestrator"
if not context.code:
return "coder"
if not any("APPROVE" in entry["message"].upper()
for entry in context.conversation_history
if entry["agent"].lower() == "code reviewer"):
return "code_reviewer"
if not context.test_cases:
return "qa_tester"
if not context.test_results or "TESTS PASSED" not in context.test_results.upper():
return "qa_tester"
if not context.documentation:
return "documentation_agent"
return "done"
# -------------------- Multi-Agent Conversation --------------------
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str,
human_event: threading.Event, human_input_queue: queue.Queue) -> None:
context = Context(original_task=task_message)
dispatcher = AgentDispatcher(log_queue, human_event, human_input_queue)
next_agent = await dispatcher.determine_next_agent(context, api_key)
coder_iterations = 0
while next_agent != "done":
if next_agent == "qa_tester":
if not context.test_cases:
context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True)
else:
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
elif next_agent == "coder" and (context.review_comments or context.test_results):
coder_iterations += 1
context = await dispatcher.dispatch(next_agent, context, api_key, model="gpt-3.5-turbo-16k")
else:
context = await dispatcher.dispatch(next_agent, context, api_key)
if next_agent == "code_reviewer":
approved = any("APPROVE" in entry["message"].upper()
for entry in context.conversation_history
if entry["agent"].lower() == "code reviewer")
if approved:
next_agent = await dispatcher.determine_next_agent(context, api_key)
else:
next_agent = "coder"
else:
next_agent = await dispatcher.determine_next_agent(context, api_key)
if next_agent == "coder" and coder_iterations > 5:
log_queue.put(("[System]", "Maximum revision iterations reached. Exiting."))
break
log_queue.put(("result", context.conversation_history))
# -------------------- Process Conversation Generator --------------------
def process_conversation_generator(task_message: str, api_key: str,
human_event: threading.Event, human_input_queue: queue.Queue,
log_queue: queue.Queue) -> Generator[Any, None, None]:
"""
Runs the multi-agent conversation in a background thread and yields conversation history updates
as a tuple: (chat update, log state update).
"""
last_log_text = ""
def run_conversation():
asyncio.run(multi_agent_conversation(task_message, log_queue, api_key, human_event, human_input_queue))
conversation_thread = threading.Thread(target=run_conversation)
conversation_thread.start()
while conversation_thread.is_alive() or not log_queue.empty():
try:
msg = log_queue.get(timeout=0.1)
if isinstance(msg, tuple) and msg[0] in ("update", "result"):
chat_update = gr.update(value=convert_history(msg[1]), visible=True)
last_log_text = conversation_to_text(msg[1])
state_update = gr.update(value=last_log_text)
yield (chat_update, state_update)
else:
pass
except queue.Empty:
pass
time.sleep(0.1)
yield (gr.update(visible=True), gr.update(value=last_log_text))
# -------------------- Multi-Agent Chat Function --------------------
def multi_agent_chat(message: str, openai_api_key: str = None) -> Generator[Any, None, None]:
if not openai_api_key:
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
yield (gr.update(value=[{"role": "assistant", "content": "Error: API key not provided."}]), gr.update())
return
human_event = threading.Event()
human_input_queue = queue.Queue()
log_queue = queue.Queue()
yield from process_conversation_generator(message, openai_api_key, human_event, human_input_queue, log_queue)
# -------------------- Download Log Function --------------------
def download_log(log_text: str) -> str:
"""
Writes the log text to a temporary file and returns the file path.
"""
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w", encoding="utf-8") as f:
f.write(log_text)
return f.name
# -------------------- Custom Gradio Blocks Interface --------------------
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}.styler{--form-gap-width: 0px !important}
#progress{height:30px}#progress .generating{display:none}.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
/* Add this to make the chatbot bigger */
.chat-container {
height: 600px; /* Adjust as needed */
overflow-y: scroll; /* Add scrollbar if content overflows */
}
'''
with gr.Blocks(theme="CultriX/gradio-theme", css=css, delete_cache=(60, 60)) as demo:
gr.Markdown("## Multi-Agent Task Solver with Human-in-the-Loop")
with gr.Row():
with gr.Column(): # Add a column for better layout
chat_output = gr.Chatbot(label="Conversation", type="messages")
chat_output.wrap = gr.HTML("<div class='chat-container'></div>") # Wrap after creation
# Hidden state to store the plain-text log.
log_state = gr.State(value="")
with gr.Row():
with gr.Column(scale=8):
message_input = gr.Textbox(label="Enter your task", placeholder="Type your task here...", lines=3)
with gr.Column(scale=2):
api_key_input = gr.Textbox(label="API Key (optional)", type="password", placeholder="Leave blank to use env variable")
send_button = gr.Button("Send")
# The multi_agent_chat function now outputs two values: one for the chat and one for the log.
send_button.click(fn=multi_agent_chat, inputs=[message_input, api_key_input], outputs=[chat_output, log_state])
with gr.Row():
download_button = gr.Button("Download Log")
download_file = gr.File(label="Download your log file")
download_button.click(fn=download_log, inputs=log_state, outputs=download_file)
if __name__ == "__main__":
demo.launch(share=True)