Spaces:
Running
Running
File size: 6,820 Bytes
26cdd43 47913ac 26cdd43 9565da9 26cdd43 fab1822 26cdd43 171cab8 4b096db 171cab8 4b096db 41d9278 171cab8 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 47913ac 26cdd43 fab1822 26cdd43 fab1822 26cdd43 fab1822 26cdd43 fab1822 26cdd43 171cab8 53e1ef4 26cdd43 bedfad8 26cdd43 1b3a43e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import sys
from huggingface_hub import ModelCard, HfApi
import requests
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from collections import defaultdict
from networkx.drawing.nx_pydot import graphviz_layout
from io import BytesIO
from PIL import Image
TITLE = """
<div align="center">
<p style="font-size: 36px;">🌳 Model Family Tree</p>
</div><br/>
<p>Automatically calculate the <strong>family tree of a given model</strong>. It also displays the type of license each model uses (permissive, noncommercial, or unknown).</p>
<p>You can also run the code in this <a href="https://colab.research.google.com/drive/1s2eQlolcI1VGgDhqWIANfkfKvcKrMyNr?usp=sharing">Colab notebook</a>. See also mrfakename's version in <a href="https://huggingface.co/spaces/mrfakename/merge-model-tree">this space</a>.</p>
"""
# We should first try to cache models
class CachedModelCard(ModelCard):
_cache = {}
@classmethod
def load(cls, model_id: str, **kwargs) -> "ModelCard":
if model_id not in cls._cache:
try:
print('REQUEST ModelCard:', model_id)
cls._cache[model_id] = super().load(model_id, **kwargs)
except:
cls._cache[model_id] = None
else:
print('CACHED:', model_id)
return cls._cache[model_id]
def get_model_names_from_yaml(url):
"""Get a list of parent model names from the yaml file."""
model_tags = []
response = requests.get(url)
if response.status_code == 200:
model_tags.extend([item for item in response.content if '/' in str(item)])
return model_tags
def get_license_color(model):
"""Get the color of the model based on its license."""
try:
card = CachedModelCard.load(model)
license = card.data.to_dict()['license'].lower()
# Define permissive licenses
permissive_licenses = ['mit', 'bsd', 'apache-2.0', 'openrail'] # Add more as needed
# Check license type
if any(perm_license in license for perm_license in permissive_licenses):
return 'lightgreen' # Permissive licenses
else:
return 'lightcoral' # Noncommercial or other licenses
except Exception as e:
print(f"Error retrieving license for {model}: {e}")
return 'lightgray'
def get_model_names(model, genealogy, found_models=None, visited_models=None):
print('---')
print(model)
if found_models is None:
found_models = set()
if visited_models is None:
visited_models = set()
if model in visited_models:
print("Model already visited...")
return found_models
visited_models.add(model)
try:
card = CachedModelCard.load(model)
card_dict = card.data.to_dict()
license = card_dict['license']
model_tags = []
if 'base_model' in card_dict:
model_tags = card_dict['base_model']
if 'tags' in card_dict and not model_tags:
tags = card_dict['tags']
model_tags = [model_name for model_name in tags if '/' in model_name]
if not model_tags:
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/merge.yml"))
if not model_tags:
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/mergekit_config.yml"))
if not isinstance(model_tags, list):
model_tags = [model_tags] if model_tags else []
found_models.add(model)
for model_tag in model_tags:
genealogy[model_tag].append(model)
get_model_names(model_tag, genealogy, found_models, visited_models)
except Exception as e:
print(f"Could not find model names for {model}: {e}")
return found_models
def find_root_nodes(G):
""" Find all nodes in the graph with no predecessors """
return [n for n, d in G.in_degree() if d == 0]
def max_width_of_tree(G):
""" Calculate the maximum width of the tree """
max_width = 0
for root in find_root_nodes(G):
width_at_depth = calculate_width_at_depth(G, root)
local_max_width = max(width_at_depth.values())
max_width = max(max_width, local_max_width)
return max_width
def calculate_width_at_depth(G, root):
""" Calculate width at each depth starting from a given root """
depth_count = defaultdict(int)
queue = [(root, 0)]
while queue:
node, depth = queue.pop(0)
depth_count[depth] += 1
for child in G.successors(node):
queue.append((child, depth + 1))
return depth_count
def create_family_tree(start_model):
genealogy = defaultdict(list)
get_model_names(start_model, genealogy) # Assuming this populates the genealogy
print("Number of models:", len(CachedModelCard._cache))
# Create a directed graph
G = nx.DiGraph()
# Add nodes and edges to the graph
for parent, children in genealogy.items():
for child in children:
G.add_edge(parent, child)
try:
# Get max depth and width
max_depth = nx.dag_longest_path_length(G) + 1
max_width = max_width_of_tree(G) + 1
except:
# Get max depth and width
max_depth = 21
max_width = 9
# Estimate plot size
height = max(8, 1.6 * max_depth)
width = max(8, 6 * max_width)
# Set Graphviz layout attributes for a bottom-up tree
plt.figure(figsize=(width, height))
pos = graphviz_layout(G, prog="dot")
# Determine node colors based on license
node_colors = [get_license_color(node) for node in G.nodes()]
# Create a label mapping with line breaks
labels = {node: node.replace("/", "\n") for node in G.nodes()}
# Draw the graph
nx.draw(G, pos, labels=labels, with_labels=True, node_color=node_colors, font_size=12, node_size=8_000, edge_color='black')
# Create a legend for the colors
legend_elements = [
Patch(facecolor='lightgreen', label='Permissive'),
Patch(facecolor='lightcoral', label='Noncommercial'),
Patch(facecolor='lightgray', label='Unknown')
]
plt.legend(handles=legend_elements, loc='upper left')
plt.title(f"{start_model}'s Family Tree", fontsize=20)
# Capture the plot as an image in memory
img_buffer = BytesIO()
plt.savefig(img_buffer, format='png', bbox_inches='tight')
plt.close()
img_buffer.seek(0)
# Open the image using PIL
img = Image.open(img_buffer)
return img
with gr.Blocks() as demo:
gr.Markdown(TITLE)
model_id = gr.Textbox(label="Model ID", value="mlabonne/NeuralBeagle14-7B")
btn = gr.Button("Create tree")
out = gr.Image()
btn.click(fn=create_family_tree, inputs=model_id, outputs=out)
demo.queue(api_open=False).launch(show_api=False) |