File size: 8,856 Bytes
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f18dc4
b6ac700
 
 
 
7f18dc4
 
b6ac700
 
 
 
 
 
 
 
 
1e744c4
b6ac700
 
 
 
 
 
 
1e744c4
 
b6ac700
 
 
 
 
 
 
 
 
 
 
1e744c4
b6ac700
 
1e744c4
b6ac700
 
 
1e744c4
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e744c4
b6ac700
 
 
 
 
9b6dda4
b6ac700
 
 
 
9b6dda4
b6ac700
 
 
 
 
 
 
 
 
 
 
50167d4
 
 
 
b6ac700
 
 
 
 
 
50167d4
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6dda4
b6ac700
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from typing import List, Union

from faster_whisper import WhisperModel, download_model
from src.config import ModelConfig, VadInitialPromptMode
from src.hooks.progressListener import ProgressListener
from src.modelCache import ModelCache
from src.prompts.abstractPromptStrategy import AbstractPromptStrategy
from src.whisper.abstractWhisperContainer import AbstractWhisperCallback, AbstractWhisperContainer
from src.utils import format_timestamp

class FasterWhisperContainer(AbstractWhisperContainer):
    def __init__(self, model_name: str, device: str = None, compute_type: str = "float16",
                       download_root: str = None,
                       cache: ModelCache = None, models: List[ModelConfig] = []):
        super().__init__(model_name, device, compute_type, download_root, cache, models)
    
    def ensure_downloaded(self):
        """
        Ensure that the model is downloaded. This is useful if you want to ensure that the model is downloaded before
        passing the container to a subprocess.
        """
        model_config = self._get_model_config()
        
        if os.path.isdir(model_config.url):
            model_config.path = model_config.url
        else:
            model_config.path = download_model(model_config.url, output_dir=self.download_root)

    def _get_model_config(self) -> ModelConfig:
        """
        Get the model configuration for the model.
        """
        for model in self.models:
            if model.name == self.model_name:
                return model
        return None

    def _create_model(self):
        print("Loading faster whisper model " + self.model_name + " for device " + str(self.device))
        model_config = self._get_model_config()
        model_url = model_config.url

        if model_config.type == "whisper":
            if model_url not in ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2", "large-v3", "large-v3-turbo"]:
                raise Exception("FasterWhisperContainer does not yet support Whisper models. Use ct2-transformers-converter to convert the model to a faster-whisper model.")
            if model_url == "large":
                # large is an alias for large-v1
                model_url = "large-v1"
            elif model_url == "large-v3-turbo":
                model_url = "deepdml/faster-whisper-large-v3-turbo-ct2"

        device = self.device

        if (device is None):
            device = "auto"

        model = WhisperModel(model_url, device=device, compute_type=self.compute_type)
        return model

    def create_callback(self, languageCode: str = None, task: str = None, 
                        prompt_strategy: AbstractPromptStrategy = None, 
                        **decodeOptions: dict) -> AbstractWhisperCallback:
        """
        Create a WhisperCallback object that can be used to transcript audio files.

        Parameters
        ----------
        languageCode: str
            The target language code of the transcription. If not specified, the language will be inferred from the audio content.
        task: str
            The task - either translate or transcribe.
        prompt_strategy: AbstractPromptStrategy
            The prompt strategy to use. If not specified, the prompt from Whisper will be used.
        decodeOptions: dict
            Additional options to pass to the decoder. Must be pickleable.

        Returns
        -------
        A WhisperCallback object.
        """
        return FasterWhisperCallback(self, languageCode=languageCode, task=task, prompt_strategy=prompt_strategy, **decodeOptions)

class FasterWhisperCallback(AbstractWhisperCallback):
    def __init__(self, model_container: FasterWhisperContainer, languageCode: str = None, task: str = None, 
                 prompt_strategy: AbstractPromptStrategy = None, 
                 **decodeOptions: dict):
        self.model_container = model_container
        self.languageCode = languageCode
        self.task = task
        self.prompt_strategy = prompt_strategy
        self.decodeOptions = decodeOptions

        self._printed_warning = False
        
    def invoke(self, audio, segment_index: int, prompt: str, detected_language: str, progress_listener: ProgressListener = None):
        """
        Peform the transcription of the given audio file or data.

        Parameters
        ----------
        audio: Union[str, np.ndarray, torch.Tensor]
            The audio file to transcribe, or the audio data as a numpy array or torch tensor.
        segment_index: int
            The target language of the transcription. If not specified, the language will be inferred from the audio content.
        task: str
            The task - either translate or transcribe.
        progress_listener: ProgressListener
            A callback to receive progress updates.
        """
        model: WhisperModel = self.model_container.get_model()

        # Copy decode options and remove options that are not supported by faster-whisper
        decodeOptions = self.decodeOptions.copy()
        verbose = decodeOptions.pop("verbose", None)

        logprob_threshold = decodeOptions.pop("logprob_threshold", None)

        patience = decodeOptions.pop("patience", None)
        length_penalty = decodeOptions.pop("length_penalty", None)
        suppress_tokens = decodeOptions.pop("suppress_tokens", None)

        if (decodeOptions.pop("fp16", None) is not None):
            if not self._printed_warning:
                print("WARNING: fp16 option is ignored by faster-whisper - use compute_type instead.")
            self._printed_warning = True

        # Fix up decode options
        if (logprob_threshold is not None):
            decodeOptions["log_prob_threshold"] = logprob_threshold

        decodeOptions["patience"] = float(patience) if patience is not None else 1.0
        decodeOptions["length_penalty"] = float(length_penalty) if length_penalty is not None else 1.0

        # See if supress_tokens is a string - if so, convert it to a list of ints
        decodeOptions["suppress_tokens"] = self._split_suppress_tokens(suppress_tokens)

        initial_prompt = self.prompt_strategy.get_segment_prompt(segment_index, prompt, detected_language) \
                           if self.prompt_strategy else prompt

        segments_generator, info = model.transcribe(audio, \
            language=self.languageCode if self.languageCode else detected_language, task=self.task, \
            initial_prompt=initial_prompt, \
            **decodeOptions
        )

        segments = []
        
        for segment in segments_generator:
            segments.append(segment)

            if progress_listener is not None:
                progress_listener.on_progress(segment.end, info.duration, desc=f"Transcribe: {segment_index}")
            if verbose:
                print("[{}->{}] {}".format(format_timestamp(segment.start, True), format_timestamp(segment.end, True),
                                          segment.text))

        text = " ".join([segment.text for segment in segments])

        # Convert the segments to a format that is easier to serialize
        whisper_segments = [{
            "text": segment.text,
            "start": segment.start,
            "end": segment.end,
            "temperature": segment.temperature,
            "avg_logprob": segment.avg_logprob,
            "compression_ratio": segment.compression_ratio,
            "no_speech_prob": segment.no_speech_prob,

            # Extra fields added by faster-whisper
            "words": [{
                "start": word.start,
                "end": word.end,
                "word": word.word,
                "probability": word.probability,
            } for word in (segment.words if segment.words is not None else []) ]
        } for segment in segments]

        result = {
            "segments": whisper_segments,
            "text": text,
            "language": info.language if info else None,

            # Extra fields added by faster-whisper
            "language_probability": info.language_probability if info else None,
            "duration": info.duration if info else None
        }

        # If we have a prompt strategy, we need to increment the current prompt
        if self.prompt_strategy:
            self.prompt_strategy.on_segment_finished(segment_index, prompt, detected_language, result)

        if progress_listener is not None:
            progress_listener.on_finished(desc=f"Transcribe: {segment_index}.")
        return result

    def _split_suppress_tokens(self, suppress_tokens: Union[str, List[int]]):
        if (suppress_tokens is None):
            return None
        if (isinstance(suppress_tokens, list)):
            return suppress_tokens

        return [int(token) for token in suppress_tokens.split(",")]