Spaces:
Running
Running
from enum import Enum | |
import os | |
from typing import List, Dict, Literal | |
class ModelConfig: | |
def __init__(self, name: str, url: str, path: str = None, type: str = "whisper", tokenizer_url: str = None): | |
""" | |
Initialize a model configuration. | |
name: Name of the model | |
url: URL to download the model from | |
path: Path to the model file. If not set, the model will be downloaded from the URL. | |
type: Type of model. Can be whisper or huggingface. | |
""" | |
self.name = name | |
self.url = url | |
self.path = path | |
self.type = type | |
self.tokenizer_url = tokenizer_url | |
VAD_INITIAL_PROMPT_MODE_VALUES=["prepend_all_segments", "prepend_first_segment", "json_prompt_mode"] | |
class VadInitialPromptMode(Enum): | |
PREPEND_ALL_SEGMENTS = 1 | |
PREPREND_FIRST_SEGMENT = 2 | |
JSON_PROMPT_MODE = 3 | |
def from_string(s: str): | |
normalized = s.lower() if s is not None and len(s) > 0 else None | |
if normalized == "prepend_all_segments": | |
return VadInitialPromptMode.PREPEND_ALL_SEGMENTS | |
elif normalized == "prepend_first_segment": | |
return VadInitialPromptMode.PREPREND_FIRST_SEGMENT | |
elif normalized == "json_prompt_mode": | |
return VadInitialPromptMode.JSON_PROMPT_MODE | |
elif normalized is not None and normalized != "": | |
raise ValueError(f"Invalid value for VadInitialPromptMode: {s}") | |
else: | |
return None | |
class ApplicationConfig: | |
def __init__(self, models: Dict[Literal["whisper", "m2m100", "nllb", "mt5", "ALMA"], List[ModelConfig]], | |
input_audio_max_duration: int = 600, share: bool = False, server_name: str = None, server_port: int = 7860, | |
queue_concurrency_count: int = 1, delete_uploaded_files: bool = True, | |
whisper_implementation: str = "whisper", default_model_name: str = "medium", | |
default_nllb_model_name: str = "distilled-600M", default_vad: str = "silero-vad", | |
vad_parallel_devices: str = "", vad_cpu_cores: int = 1, vad_process_timeout: int = 1800, | |
auto_parallel: bool = False, output_dir: str = None, | |
model_dir: str = None, device: str = None, | |
verbose: bool = True, task: str = "transcribe", language: str = None, | |
vad_initial_prompt_mode: str = "prepend_first_segment ", | |
vad_merge_window: float = 5, vad_max_merge_size: float = 30, | |
vad_padding: float = 1, vad_prompt_window: float = 3, | |
temperature: float = 0, best_of: int = 5, beam_size: int = 5, | |
patience: float = None, length_penalty: float = None, | |
suppress_tokens: str = "-1", initial_prompt: str = None, | |
condition_on_previous_text: bool = True, fp16: bool = True, | |
compute_type: str = "float16", | |
temperature_increment_on_fallback: float = 0.2, compression_ratio_threshold: float = 2.4, | |
logprob_threshold: float = -1.0, no_speech_threshold: float = 0.6, | |
repetition_penalty: float = 1.0, no_repeat_ngram_size: int = 0, | |
# Word timestamp settings | |
word_timestamps: bool = False, prepend_punctuations: str = "\"\'“¿([{-", | |
append_punctuations: str = "\"\'.。,,!!??::”)]}、", | |
highlight_words: bool = False, | |
# Diarization | |
auth_token: str = None, diarization: bool = False, diarization_speakers: int = 2, | |
diarization_min_speakers: int = 1, diarization_max_speakers: int = 5, | |
diarization_process_timeout: int = 60, | |
# Translation | |
translation_batch_size: int = 2, | |
translation_no_repeat_ngram_size: int = 3, | |
translation_num_beams: int = 2, | |
): | |
self.models = models | |
# WebUI settings | |
self.input_audio_max_duration = input_audio_max_duration | |
self.share = share | |
self.server_name = server_name | |
self.server_port = server_port | |
self.queue_concurrency_count = queue_concurrency_count | |
self.delete_uploaded_files = delete_uploaded_files | |
self.whisper_implementation = whisper_implementation | |
self.default_model_name = default_model_name | |
self.default_nllb_model_name = default_nllb_model_name | |
self.default_vad = default_vad | |
self.vad_parallel_devices = vad_parallel_devices | |
self.vad_cpu_cores = vad_cpu_cores | |
self.vad_process_timeout = vad_process_timeout | |
self.auto_parallel = auto_parallel | |
self.output_dir = output_dir | |
self.model_dir = model_dir | |
self.device = device | |
self.verbose = verbose | |
self.task = task | |
self.language = language | |
self.vad_initial_prompt_mode = vad_initial_prompt_mode | |
self.vad_merge_window = vad_merge_window | |
self.vad_max_merge_size = vad_max_merge_size | |
self.vad_padding = vad_padding | |
self.vad_prompt_window = vad_prompt_window | |
self.temperature = temperature | |
self.best_of = best_of | |
self.beam_size = beam_size | |
self.patience = patience | |
self.length_penalty = length_penalty | |
self.suppress_tokens = suppress_tokens | |
self.initial_prompt = initial_prompt | |
self.condition_on_previous_text = condition_on_previous_text | |
self.fp16 = fp16 | |
self.compute_type = compute_type | |
self.temperature_increment_on_fallback = temperature_increment_on_fallback | |
self.compression_ratio_threshold = compression_ratio_threshold | |
self.logprob_threshold = logprob_threshold | |
self.no_speech_threshold = no_speech_threshold | |
self.repetition_penalty = repetition_penalty | |
self.no_repeat_ngram_size = no_repeat_ngram_size | |
# Word timestamp settings | |
self.word_timestamps = word_timestamps | |
self.prepend_punctuations = prepend_punctuations | |
self.append_punctuations = append_punctuations | |
self.highlight_words = highlight_words | |
# Diarization settings | |
self.auth_token = auth_token | |
self.diarization = diarization | |
self.diarization_speakers = diarization_speakers | |
self.diarization_min_speakers = diarization_min_speakers | |
self.diarization_max_speakers = diarization_max_speakers | |
self.diarization_process_timeout = diarization_process_timeout | |
# Translation | |
self.translation_batch_size = translation_batch_size | |
self.translation_no_repeat_ngram_size = translation_no_repeat_ngram_size | |
self.translation_num_beams = translation_num_beams | |
def get_model_names(self, name: str): | |
return [ x.name for x in self.models[name] ] | |
def update(self, **new_values): | |
result = ApplicationConfig(**self.__dict__) | |
for key, value in new_values.items(): | |
setattr(result, key, value) | |
return result | |
def create_default(**kwargs): | |
app_config = ApplicationConfig.parse_file(os.environ.get("WHISPER_WEBUI_CONFIG", "config.json5")) | |
# Update with kwargs | |
if len(kwargs) > 0: | |
app_config = app_config.update(**kwargs) | |
return app_config | |
def parse_file(config_path: str): | |
import json5 | |
with open(config_path, "r", encoding="utf-8") as f: | |
# Load using json5 | |
data = json5.load(f) | |
data_models = data.pop("models", []) | |
models: Dict[Literal["whisper", "m2m100", "nllb", "mt5", "ALMA"], List[ModelConfig]] = { | |
key: [ModelConfig(**item) for item in value] | |
for key, value in data_models.items() | |
} | |
return ApplicationConfig(models, **data) | |