avans06 commited on
Commit
b01e56c
·
1 Parent(s): 85d6c89

Added support for the seamless-m4t-v2-large T2TT translation model.

Browse files
app.py CHANGED
@@ -39,8 +39,9 @@ from src.whisper.abstractWhisperContainer import AbstractWhisperContainer
39
  from src.whisper.whisperFactory import create_whisper_container
40
  from src.translation.translationModel import TranslationModel
41
  from src.translation.translationLangs import (TranslationLang,
42
- _TO_LANG_CODE_WHISPER, get_lang_whisper_names, get_lang_from_whisper_name, get_lang_from_whisper_code,
43
- get_lang_nllb_names, get_lang_from_nllb_name, get_lang_m2m100_names, get_lang_from_m2m100_name, sort_lang_by_whisper_codes)
 
44
  import shutil
45
  import zhconv
46
  import tqdm
@@ -235,6 +236,8 @@ class WhisperTranscriber:
235
  ALMALangName: str = decodeOptions.pop("ALMALangName")
236
  madlad400ModelName: str = decodeOptions.pop("madlad400ModelName")
237
  madlad400LangName: str = decodeOptions.pop("madlad400LangName")
 
 
238
 
239
  translationBatchSize: int = decodeOptions.pop("translationBatchSize")
240
  translationNoRepeatNgramSize: int = decodeOptions.pop("translationNoRepeatNgramSize")
@@ -376,6 +379,11 @@ class WhisperTranscriber:
376
  selectedModelName = madlad400ModelName if madlad400ModelName is not None and len(madlad400ModelName) > 0 else "madlad400-3b-mt-ct2-int8_float16/SoybeanMilk"
377
  selectedModel = next((modelConfig for modelConfig in self.app_config.models["madlad400"] if modelConfig.name == selectedModelName), None)
378
  translationLang = get_lang_from_m2m100_name(madlad400LangName)
 
 
 
 
 
379
 
380
  if translationLang is not None:
381
  translationModel = TranslationModel(modelConfig=selectedModel, whisperLang=whisperLang, translationLang=translationLang, batchSize=translationBatchSize, noRepeatNgramSize=translationNoRepeatNgramSize, numBeams=translationNumBeams, torchDtypeFloat16=translationTorchDtypeFloat16, usingBitsandbytes=translationUsingBitsandbytes)
@@ -938,6 +946,7 @@ def create_ui(app_config: ApplicationConfig):
938
  mt5_models = app_config.get_model_names("mt5")
939
  ALMA_models = app_config.get_model_names("ALMA")
940
  madlad400_models = app_config.get_model_names("madlad400")
 
941
  if not torch.cuda.is_available(): # Loading only quantized or models with medium-low parameters in an environment without GPU support.
942
  nllb_models = list(filter(lambda nllb: any(name in nllb for name in ["-600M", "-1.3B", "-3.3B-ct2"]), nllb_models))
943
  m2m100_models = list(filter(lambda m2m100: "12B" not in m2m100, m2m100_models))
@@ -968,6 +977,10 @@ def create_ui(app_config: ApplicationConfig):
968
  gr.Dropdown(label="madlad400 - Model (for translate)", choices=madlad400_models, elem_id="madlad400ModelName"),
969
  gr.Dropdown(label="madlad400 - Language", choices=sorted(get_lang_m2m100_names()), elem_id="madlad400LangName"),
970
  }
 
 
 
 
971
 
972
  common_translation_inputs = lambda : {
973
  gr.Number(label="Translation - Batch Size", precision=0, value=app_config.translation_batch_size, elem_id="translationBatchSize"),
@@ -1054,14 +1067,18 @@ def create_ui(app_config: ApplicationConfig):
1054
  with gr.Tab(label="ALMA") as simpleALMATab:
1055
  with gr.Row():
1056
  simpleInputDict.update(common_ALMA_inputs())
1057
- with gr.Tab(label="madlad400") as simplemadlad400Tab:
1058
  with gr.Row():
1059
  simpleInputDict.update(common_madlad400_inputs())
 
 
 
1060
  simpleM2M100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [simpleTranslateInput] )
1061
  simpleNllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [simpleTranslateInput] )
1062
  simpleMT5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [simpleTranslateInput] )
1063
  simpleALMATab.select(fn=lambda: "ALMA", inputs = [], outputs= [simpleTranslateInput] )
1064
- simplemadlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [simpleTranslateInput] )
 
1065
  with gr.Column():
1066
  with gr.Tab(label="URL") as simpleUrlTab:
1067
  simpleInputDict.update({gr.Text(label="URL (YouTube, etc.)", elem_id = "urlData")})
@@ -1125,14 +1142,18 @@ def create_ui(app_config: ApplicationConfig):
1125
  with gr.Tab(label="ALMA") as fullALMATab:
1126
  with gr.Row():
1127
  fullInputDict.update(common_ALMA_inputs())
1128
- with gr.Tab(label="madlad400") as fullmadlad400Tab:
1129
  with gr.Row():
1130
  fullInputDict.update(common_madlad400_inputs())
 
 
 
1131
  fullM2M100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [fullTranslateInput] )
1132
  fullNllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [fullTranslateInput] )
1133
  fullMT5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [fullTranslateInput] )
1134
  fullALMATab.select(fn=lambda: "ALMA", inputs = [], outputs= [fullTranslateInput] )
1135
- fullmadlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [fullTranslateInput] )
 
1136
  with gr.Column():
1137
  with gr.Tab(label="URL") as fullUrlTab:
1138
  fullInputDict.update({gr.Text(label="URL (YouTube, etc.)", elem_id = "urlData")})
 
39
  from src.whisper.whisperFactory import create_whisper_container
40
  from src.translation.translationModel import TranslationModel
41
  from src.translation.translationLangs import (TranslationLang,
42
+ _TO_LANG_CODE_WHISPER, sort_lang_by_whisper_codes,
43
+ get_lang_from_whisper_name, get_lang_from_whisper_code, get_lang_from_nllb_name, get_lang_from_m2m100_name, get_lang_from_seamlessTx_name,
44
+ get_lang_whisper_names, get_lang_nllb_names, get_lang_m2m100_names, get_lang_seamlessTx_names)
45
  import shutil
46
  import zhconv
47
  import tqdm
 
236
  ALMALangName: str = decodeOptions.pop("ALMALangName")
237
  madlad400ModelName: str = decodeOptions.pop("madlad400ModelName")
238
  madlad400LangName: str = decodeOptions.pop("madlad400LangName")
239
+ seamlessModelName: str = decodeOptions.pop("seamlessModelName")
240
+ seamlessLangName: str = decodeOptions.pop("seamlessLangName")
241
 
242
  translationBatchSize: int = decodeOptions.pop("translationBatchSize")
243
  translationNoRepeatNgramSize: int = decodeOptions.pop("translationNoRepeatNgramSize")
 
379
  selectedModelName = madlad400ModelName if madlad400ModelName is not None and len(madlad400ModelName) > 0 else "madlad400-3b-mt-ct2-int8_float16/SoybeanMilk"
380
  selectedModel = next((modelConfig for modelConfig in self.app_config.models["madlad400"] if modelConfig.name == selectedModelName), None)
381
  translationLang = get_lang_from_m2m100_name(madlad400LangName)
382
+ elif translateInput == "seamless" and seamlessLangName is not None and len(seamlessLangName) > 0:
383
+ selectedModelName = seamlessModelName if seamlessModelName is not None and len(seamlessModelName) > 0 else "facebook/seamless-m4t-v2-large"
384
+ selectedModel = next((modelConfig for modelConfig in self.app_config.models["seamless"] if modelConfig.name == selectedModelName), None)
385
+ translationLang = get_lang_from_seamlessTx_name(seamlessLangName)
386
+
387
 
388
  if translationLang is not None:
389
  translationModel = TranslationModel(modelConfig=selectedModel, whisperLang=whisperLang, translationLang=translationLang, batchSize=translationBatchSize, noRepeatNgramSize=translationNoRepeatNgramSize, numBeams=translationNumBeams, torchDtypeFloat16=translationTorchDtypeFloat16, usingBitsandbytes=translationUsingBitsandbytes)
 
946
  mt5_models = app_config.get_model_names("mt5")
947
  ALMA_models = app_config.get_model_names("ALMA")
948
  madlad400_models = app_config.get_model_names("madlad400")
949
+ seamless_models = app_config.get_model_names("seamless")
950
  if not torch.cuda.is_available(): # Loading only quantized or models with medium-low parameters in an environment without GPU support.
951
  nllb_models = list(filter(lambda nllb: any(name in nllb for name in ["-600M", "-1.3B", "-3.3B-ct2"]), nllb_models))
952
  m2m100_models = list(filter(lambda m2m100: "12B" not in m2m100, m2m100_models))
 
977
  gr.Dropdown(label="madlad400 - Model (for translate)", choices=madlad400_models, elem_id="madlad400ModelName"),
978
  gr.Dropdown(label="madlad400 - Language", choices=sorted(get_lang_m2m100_names()), elem_id="madlad400LangName"),
979
  }
980
+ common_seamless_inputs = lambda : {
981
+ gr.Dropdown(label="seamless - Model (for translate)", choices=seamless_models, elem_id="seamlessModelName"),
982
+ gr.Dropdown(label="seamless - Language", choices=sorted(get_lang_seamlessTx_names()), elem_id="seamlessLangName"),
983
+ }
984
 
985
  common_translation_inputs = lambda : {
986
  gr.Number(label="Translation - Batch Size", precision=0, value=app_config.translation_batch_size, elem_id="translationBatchSize"),
 
1067
  with gr.Tab(label="ALMA") as simpleALMATab:
1068
  with gr.Row():
1069
  simpleInputDict.update(common_ALMA_inputs())
1070
+ with gr.Tab(label="madlad400") as simpleMadlad400Tab:
1071
  with gr.Row():
1072
  simpleInputDict.update(common_madlad400_inputs())
1073
+ with gr.Tab(label="seamless") as simpleSeamlessTab:
1074
+ with gr.Row():
1075
+ simpleInputDict.update(common_seamless_inputs())
1076
  simpleM2M100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [simpleTranslateInput] )
1077
  simpleNllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [simpleTranslateInput] )
1078
  simpleMT5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [simpleTranslateInput] )
1079
  simpleALMATab.select(fn=lambda: "ALMA", inputs = [], outputs= [simpleTranslateInput] )
1080
+ simpleMadlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [simpleTranslateInput] )
1081
+ simpleSeamlessTab.select(fn=lambda: "seamless", inputs = [], outputs= [simpleTranslateInput] )
1082
  with gr.Column():
1083
  with gr.Tab(label="URL") as simpleUrlTab:
1084
  simpleInputDict.update({gr.Text(label="URL (YouTube, etc.)", elem_id = "urlData")})
 
1142
  with gr.Tab(label="ALMA") as fullALMATab:
1143
  with gr.Row():
1144
  fullInputDict.update(common_ALMA_inputs())
1145
+ with gr.Tab(label="madlad400") as fullMadlad400Tab:
1146
  with gr.Row():
1147
  fullInputDict.update(common_madlad400_inputs())
1148
+ with gr.Tab(label="seamless") as fullSeamlessTab:
1149
+ with gr.Row():
1150
+ fullInputDict.update(common_seamless_inputs())
1151
  fullM2M100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [fullTranslateInput] )
1152
  fullNllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [fullTranslateInput] )
1153
  fullMT5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [fullTranslateInput] )
1154
  fullALMATab.select(fn=lambda: "ALMA", inputs = [], outputs= [fullTranslateInput] )
1155
+ fullMadlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [fullTranslateInput] )
1156
+ fullSeamlessTab.select(fn=lambda: "seamless", inputs = [], outputs= [fullTranslateInput] )
1157
  with gr.Column():
1158
  with gr.Tab(label="URL") as fullUrlTab:
1159
  fullInputDict.update({gr.Text(label="URL (YouTube, etc.)", elem_id = "urlData")})
config.json5 CHANGED
@@ -269,6 +269,23 @@
269
  "url": "jbochi/madlad400-10b-mt",
270
  "type": "huggingface"
271
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
  ]
273
  },
274
  // Configuration options that will be used if they are not specified in the command line arguments.
 
269
  "url": "jbochi/madlad400-10b-mt",
270
  "type": "huggingface"
271
  }
272
+ ],
273
+ "seamless": [
274
+ //{
275
+ // "name": "hf-seamless-m4t-medium/facebook",
276
+ // "url": "facebook/hf-seamless-m4t-medium",
277
+ // "type": "huggingface"
278
+ //},
279
+ //{
280
+ // "name": "seamless-m4t-large/facebook",
281
+ // "url": "facebook/seamless-m4t-large",
282
+ // "type": "huggingface"
283
+ //},
284
+ {
285
+ "name": "seamless-m4t-v2-large/facebook",
286
+ "url": "facebook/seamless-m4t-v2-large",
287
+ "type": "huggingface"
288
+ }
289
  ]
290
  },
291
  // Configuration options that will be used if they are not specified in the command line arguments.
docs/translateModel.md CHANGED
@@ -22,7 +22,7 @@ M2M100 is a multilingual translation model introduced by Facebook AI in October
22
  |------|------------|------|---------------|---------------|
23
  | [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) | 418M | 1.94 GB | float32 | ≈2 GB |
24
  | [facebook/m2m100_1.2B](https://huggingface.co/facebook/m2m100_1.2B) | 1.2B | 4.96 GB | float32 | ≈5 GB |
25
- | [facebook/m2m100-12B-last-ckpt](https://huggingface.co/facebook/m2m100-12B-last-ckpt) | 12B | 47.2 GB | float32 | 22.1 GB (torch dtype in float16) |
26
 
27
  ## M2M100-CTranslate2
28
 
@@ -143,14 +143,14 @@ Text-to-speech translation (T2ST)
143
  Text-to-text translation (T2TT)
144
  Automatic speech recognition (ASR)
145
 
146
- SeamlessM4T-v1 introduced by Seamless Communication team from Meta AI in Aug 2023. The paper is titled "`SeamlessM4T: Massively Multilingual & Multimodal Machine Translation`"([arXiv:2308.11596](https://arxiv.org/abs/2308.11596))
147
- SeamlessM4T-v2 introduced by Seamless Communication team from Meta AI in Dec 2023. The paper is titled "`Seamless: Multilingual Expressive and Streaming Speech Translation`"([arXiv:2312.05187](https://arxiv.org/abs/2312.05187))
148
 
149
  | Name | Parameters | Size | type/quantize | Required VRAM |
150
  |------|------------|------|---------------|---------------|
151
  | [facebook/hf-seamless-m4t-medium](https://huggingface.co/facebook/hf-seamless-m4t-medium) | 1.2B | 4.84 GB | float32 | N/A |
152
  | [facebook/seamless-m4t-large](https://huggingface.co/facebook/seamless-m4t-large) | 2.3B | 11.4 GB | float32 | N/A |
153
- | [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/seamless-m4t-v2-large) | 2.3B | 11.4 GB (safetensors:9.24 GB) | float32 | N/A |
154
 
155
 
156
  # Options
 
22
  |------|------------|------|---------------|---------------|
23
  | [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) | 418M | 1.94 GB | float32 | ≈2 GB |
24
  | [facebook/m2m100_1.2B](https://huggingface.co/facebook/m2m100_1.2B) | 1.2B | 4.96 GB | float32 | ≈5 GB |
25
+ | [facebook/m2m100-12B-last-ckpt](https://huggingface.co/facebook/m2m100-12B-last-ckpt) | 12B | 47.2 GB | float32 | 22.1 GB (torch dtype in float16) |
26
 
27
  ## M2M100-CTranslate2
28
 
 
143
  Text-to-text translation (T2TT)
144
  Automatic speech recognition (ASR)
145
 
146
+ [SeamlessM4T-v1](https://huggingface.co/docs/transformers/main/en/model_doc/seamless_m4t) introduced by Seamless Communication team from Meta AI in Aug 2023. The paper is titled "`SeamlessM4T: Massively Multilingual & Multimodal Machine Translation`"([arXiv:2308.11596](https://arxiv.org/abs/2308.11596))
147
+ [SeamlessM4T-v2](https://huggingface.co/docs/transformers/main/en/model_doc/seamless_m4t_v2) introduced by Seamless Communication team from Meta AI in Dec 2023. The paper is titled "`Seamless: Multilingual Expressive and Streaming Speech Translation`"([arXiv:2312.05187](https://arxiv.org/abs/2312.05187))
148
 
149
  | Name | Parameters | Size | type/quantize | Required VRAM |
150
  |------|------------|------|---------------|---------------|
151
  | [facebook/hf-seamless-m4t-medium](https://huggingface.co/facebook/hf-seamless-m4t-medium) | 1.2B | 4.84 GB | float32 | N/A |
152
  | [facebook/seamless-m4t-large](https://huggingface.co/facebook/seamless-m4t-large) | 2.3B | 11.4 GB | float32 | N/A |
153
+ | [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/seamless-m4t-v2-large) | 2.3B | 11.4 GB (safetensors:9.24 GB) | float32 | ≈9.2 GB |
154
 
155
 
156
  # Options
src/config.py CHANGED
@@ -50,7 +50,7 @@ class VadInitialPromptMode(Enum):
50
  return None
51
 
52
  class ApplicationConfig:
53
- def __init__(self, models: Dict[Literal["whisper", "m2m100", "nllb", "mt5", "ALMA", "madlad400"], List[ModelConfig]],
54
  input_audio_max_duration: int = 600, share: bool = False, server_name: str = None, server_port: int = 7860,
55
  queue_concurrency_count: int = 1, delete_uploaded_files: bool = True,
56
  whisper_implementation: str = "whisper", default_model_name: str = "medium",
@@ -185,7 +185,7 @@ class ApplicationConfig:
185
  # Load using json5
186
  data = json5.load(f)
187
  data_models = data.pop("models", [])
188
- models: Dict[Literal["whisper", "m2m100", "nllb", "mt5", "ALMA", "madlad400"], List[ModelConfig]] = {
189
  key: [ModelConfig(**item) for item in value]
190
  for key, value in data_models.items()
191
  }
 
50
  return None
51
 
52
  class ApplicationConfig:
53
+ def __init__(self, models: Dict[Literal["whisper", "m2m100", "nllb", "mt5", "ALMA", "madlad400", "seamless"], List[ModelConfig]],
54
  input_audio_max_duration: int = 600, share: bool = False, server_name: str = None, server_port: int = 7860,
55
  queue_concurrency_count: int = 1, delete_uploaded_files: bool = True,
56
  whisper_implementation: str = "whisper", default_model_name: str = "medium",
 
185
  # Load using json5
186
  data = json5.load(f)
187
  data_models = data.pop("models", [])
188
+ models: Dict[Literal["whisper", "m2m100", "nllb", "mt5", "ALMA", "madlad400", "seamless"], List[ModelConfig]] = {
189
  key: [ModelConfig(**item) for item in value]
190
  for key, value in data_models.items()
191
  }
src/translation/translationLangs.py CHANGED
@@ -9,23 +9,36 @@ class Lang():
9
  return f"code:{self.code}, name:{self.names}"
10
 
11
  class TranslationLang():
12
- def __init__(self, nllb: Lang, whisper: Lang = None, m2m100: Lang = None):
13
- self.nllb = nllb
14
- self.whisper = whisper
15
  self.m2m100 = None
 
16
 
17
- if m2m100 is None: m2m100 = whisper
18
- if m2m100 is not None and len(m2m100.names) > 0:
19
- self.m2m100 = m2m100
 
 
 
 
 
 
 
 
 
 
20
 
21
  def __repr__(self):
22
  result = ""
23
- if self.nllb is not None:
24
  result += f"NLLB={self.nllb} "
25
- if self.whisper is not None:
26
  result += f"WHISPER={self.whisper} "
27
- if self.m2m100 is not None:
28
- result += f"M@M100={self.m2m100} "
 
 
29
  return f"Language {result}"
30
 
31
  """
@@ -49,211 +62,211 @@ https://huggingface.co/facebook/m2m100_1.2B
49
  The available languages for m2m100 and whisper are almost identical. Most of the codes correspond to the ISO 639-1 standard. For detailed information, please refer to the official documentation provided.
50
  """
51
  TranslationLangs = [
52
- TranslationLang(Lang("ace_Arab", "Acehnese (Arabic script)")),
53
- TranslationLang(Lang("ace_Latn", "Acehnese (Latin script)")),
54
- TranslationLang(Lang("acm_Arab", "Mesopotamian Arabic"), Lang("ar", "Arabic")),
55
- TranslationLang(Lang("acq_Arab", "Ta’izzi-Adeni Arabic"), Lang("ar", "Arabic")),
56
- TranslationLang(Lang("aeb_Arab", "Tunisian Arabic")),
57
- TranslationLang(Lang("afr_Latn", "Afrikaans"), Lang("af", "Afrikaans")),
58
- TranslationLang(Lang("ajp_Arab", "South Levantine Arabic"), Lang("ar", "Arabic")),
59
- TranslationLang(Lang("aka_Latn", "Akan")),
60
- TranslationLang(Lang("amh_Ethi", "Amharic"), Lang("am", "Amharic")),
61
- TranslationLang(Lang("apc_Arab", "North Levantine Arabic"), Lang("ar", "Arabic")),
62
- TranslationLang(Lang("arb_Arab", "Modern Standard Arabic"), Lang("ar", "Arabic")),
63
- TranslationLang(Lang("arb_Latn", "Modern Standard Arabic (Romanized)")),
64
- TranslationLang(Lang("ars_Arab", "Najdi Arabic"), Lang("ar", "Arabic")),
65
- TranslationLang(Lang("ary_Arab", "Moroccan Arabic"), Lang("ar", "Arabic")),
66
- TranslationLang(Lang("arz_Arab", "Egyptian Arabic"), Lang("ar", "Arabic")),
67
- TranslationLang(Lang("asm_Beng", "Assamese"), Lang("as", "Assamese")),
68
- TranslationLang(Lang("ast_Latn", "Asturian"), None, Lang("ast", "Asturian")),
69
- TranslationLang(Lang("awa_Deva", "Awadhi")),
70
- TranslationLang(Lang("ayr_Latn", "Central Aymara")),
71
- TranslationLang(Lang("azb_Arab", "South Azerbaijani"), Lang("az", "Azerbaijani")),
72
- TranslationLang(Lang("azj_Latn", "North Azerbaijani"), Lang("az", "Azerbaijani")),
73
- TranslationLang(Lang("bak_Cyrl", "Bashkir"), Lang("ba", "Bashkir")),
74
- TranslationLang(Lang("bam_Latn", "Bambara")),
75
- TranslationLang(Lang("ban_Latn", "Balinese")),
76
- TranslationLang(Lang("bel_Cyrl", "Belarusian"), Lang("be", "Belarusian")),
77
- TranslationLang(Lang("bem_Latn", "Bemba")),
78
- TranslationLang(Lang("ben_Beng", "Bengali"), Lang("bn", "Bengali")),
79
- TranslationLang(Lang("bho_Deva", "Bhojpuri")),
80
- TranslationLang(Lang("bjn_Arab", "Banjar (Arabic script)")),
81
- TranslationLang(Lang("bjn_Latn", "Banjar (Latin script)")),
82
- TranslationLang(Lang("bod_Tibt", "Standard Tibetan"), Lang("bo", "Tibetan")),
83
- TranslationLang(Lang("bos_Latn", "Bosnian"), Lang("bs", "Bosnian")),
84
- TranslationLang(Lang("bug_Latn", "Buginese")),
85
- TranslationLang(Lang("bul_Cyrl", "Bulgarian"), Lang("bg", "Bulgarian")),
86
- TranslationLang(Lang("cat_Latn", "Catalan"), Lang("ca", "Catalan", "valencian")),
87
- TranslationLang(Lang("ceb_Latn", "Cebuano"), None, Lang("ceb", "Cebuano")),
88
- TranslationLang(Lang("ces_Latn", "Czech"), Lang("cs", "Czech")),
89
- TranslationLang(Lang("cjk_Latn", "Chokwe")),
90
- TranslationLang(Lang("ckb_Arab", "Central Kurdish")),
91
- TranslationLang(Lang("crh_Latn", "Crimean Tatar")),
92
- TranslationLang(Lang("cym_Latn", "Welsh"), Lang("cy", "Welsh")),
93
- TranslationLang(Lang("dan_Latn", "Danish"), Lang("da", "Danish")),
94
- TranslationLang(Lang("deu_Latn", "German"), Lang("de", "German")),
95
- TranslationLang(Lang("dik_Latn", "Southwestern Dinka")),
96
- TranslationLang(Lang("dyu_Latn", "Dyula")),
97
- TranslationLang(Lang("dzo_Tibt", "Dzongkha")),
98
- TranslationLang(Lang("ell_Grek", "Greek"), Lang("el", "Greek")),
99
- TranslationLang(Lang("eng_Latn", "English"), Lang("en", "English")),
100
- TranslationLang(Lang("epo_Latn", "Esperanto")),
101
- TranslationLang(Lang("est_Latn", "Estonian"), Lang("et", "Estonian")),
102
- TranslationLang(Lang("eus_Latn", "Basque"), Lang("eu", "Basque")),
103
- TranslationLang(Lang("ewe_Latn", "Ewe")),
104
- TranslationLang(Lang("fao_Latn", "Faroese"), Lang("fo", "Faroese")),
105
- TranslationLang(Lang("fij_Latn", "Fijian")),
106
- TranslationLang(Lang("fin_Latn", "Finnish"), Lang("fi", "Finnish")),
107
- TranslationLang(Lang("fon_Latn", "Fon")),
108
- TranslationLang(Lang("fra_Latn", "French"), Lang("fr", "French")),
109
- TranslationLang(Lang("fur_Latn", "Friulian")),
110
- TranslationLang(Lang("fuv_Latn", "Nigerian Fulfulde"), None, Lang("ff", "Fulah")),
111
- TranslationLang(Lang("gla_Latn", "Scottish Gaelic"), None, Lang("gd", "Scottish Gaelic")),
112
- TranslationLang(Lang("gle_Latn", "Irish"), None, Lang("ga", "Irish")),
113
- TranslationLang(Lang("glg_Latn", "Galician"), Lang("gl", "Galician")),
114
- TranslationLang(Lang("grn_Latn", "Guarani")),
115
- TranslationLang(Lang("guj_Gujr", "Gujarati"), Lang("gu", "Gujarati")),
116
- TranslationLang(Lang("hat_Latn", "Haitian Creole"), Lang("ht", "Haitian creole", "haitian")),
117
- TranslationLang(Lang("hau_Latn", "Hausa"), Lang("ha", "Hausa")),
118
- TranslationLang(Lang("heb_Hebr", "Hebrew"), Lang("he", "Hebrew")),
119
- TranslationLang(Lang("hin_Deva", "Hindi"), Lang("hi", "Hindi")),
120
- TranslationLang(Lang("hne_Deva", "Chhattisgarhi")),
121
- TranslationLang(Lang("hrv_Latn", "Croatian"), Lang("hr", "Croatian")),
122
- TranslationLang(Lang("hun_Latn", "Hungarian"), Lang("hu", "Hungarian")),
123
- TranslationLang(Lang("hye_Armn", "Armenian"), Lang("hy", "Armenian")),
124
- TranslationLang(Lang("ibo_Latn", "Igbo"), None, Lang("ig", "Igbo")),
125
- TranslationLang(Lang("ilo_Latn", "Ilocano"), None, Lang("ilo", "Iloko")),
126
- TranslationLang(Lang("ind_Latn", "Indonesian"), Lang("id", "Indonesian")),
127
- TranslationLang(Lang("isl_Latn", "Icelandic"), Lang("is", "Icelandic")),
128
- TranslationLang(Lang("ita_Latn", "Italian"), Lang("it", "Italian")),
129
- TranslationLang(Lang("jav_Latn", "Javanese"), Lang("jw", "Javanese"), Lang("jv", "Javanese")),
130
- TranslationLang(Lang("jpn_Jpan", "Japanese"), Lang("ja", "Japanese")),
131
- TranslationLang(Lang("kab_Latn", "Kabyle")),
132
- TranslationLang(Lang("kac_Latn", "Jingpho")),
133
- TranslationLang(Lang("kam_Latn", "Kamba")),
134
- TranslationLang(Lang("kan_Knda", "Kannada"), Lang("kn", "Kannada")),
135
- TranslationLang(Lang("kas_Arab", "Kashmiri (Arabic script)")),
136
- TranslationLang(Lang("kas_Deva", "Kashmiri (Devanagari script)")),
137
- TranslationLang(Lang("kat_Geor", "Georgian"), Lang("ka", "Georgian")),
138
- TranslationLang(Lang("knc_Arab", "Central Kanuri (Arabic script)")),
139
- TranslationLang(Lang("knc_Latn", "Central Kanuri (Latin script)")),
140
- TranslationLang(Lang("kaz_Cyrl", "Kazakh"), Lang("kk", "Kazakh")),
141
- TranslationLang(Lang("kbp_Latn", "Kabiyè")),
142
- TranslationLang(Lang("kea_Latn", "Kabuverdianu")),
143
- TranslationLang(Lang("khm_Khmr", "Khmer"), Lang("km", "Khmer")),
144
- TranslationLang(Lang("kik_Latn", "Kikuyu")),
145
- TranslationLang(Lang("kin_Latn", "Kinyarwanda")),
146
- TranslationLang(Lang("kir_Cyrl", "Kyrgyz")),
147
- TranslationLang(Lang("kmb_Latn", "Kimbundu")),
148
- TranslationLang(Lang("kmr_Latn", "Northern Kurdish")),
149
- TranslationLang(Lang("kon_Latn", "Kikongo")),
150
- TranslationLang(Lang("kor_Hang", "Korean"), Lang("ko", "Korean")),
151
- TranslationLang(Lang("lao_Laoo", "Lao"), Lang("lo", "Lao")),
152
- TranslationLang(Lang("lij_Latn", "Ligurian")),
153
- TranslationLang(Lang("lim_Latn", "Limburgish")),
154
- TranslationLang(Lang("lin_Latn", "Lingala"), Lang("ln", "Lingala")),
155
- TranslationLang(Lang("lit_Latn", "Lithuanian"), Lang("lt", "Lithuanian")),
156
- TranslationLang(Lang("lmo_Latn", "Lombard")),
157
- TranslationLang(Lang("ltg_Latn", "Latgalian")),
158
- TranslationLang(Lang("ltz_Latn", "Luxembourgish"), Lang("lb", "Luxembourgish", "letzeburgesch")),
159
- TranslationLang(Lang("lua_Latn", "Luba-Kasai")),
160
- TranslationLang(Lang("lug_Latn", "Ganda"), None, Lang("lg", "Ganda")),
161
- TranslationLang(Lang("luo_Latn", "Luo")),
162
- TranslationLang(Lang("lus_Latn", "Mizo")),
163
- TranslationLang(Lang("lvs_Latn", "Standard Latvian"), Lang("lv", "Latvian")),
164
- TranslationLang(Lang("mag_Deva", "Magahi")),
165
- TranslationLang(Lang("mai_Deva", "Maithili")),
166
- TranslationLang(Lang("mal_Mlym", "Malayalam"), Lang("ml", "Malayalam")),
167
- TranslationLang(Lang("mar_Deva", "Marathi"), Lang("mr", "Marathi")),
168
- TranslationLang(Lang("min_Arab", "Minangkabau (Arabic script)")),
169
- TranslationLang(Lang("min_Latn", "Minangkabau (Latin script)")),
170
- TranslationLang(Lang("mkd_Cyrl", "Macedonian"), Lang("mk", "Macedonian")),
171
- TranslationLang(Lang("plt_Latn", "Plateau Malagasy"), Lang("mg", "Malagasy")),
172
- TranslationLang(Lang("mlt_Latn", "Maltese"), Lang("mt", "Maltese")),
173
- TranslationLang(Lang("mni_Beng", "Meitei (Bengali script)")),
174
- TranslationLang(Lang("khk_Cyrl", "Halh Mongolian"), Lang("mn", "Mongolian")),
175
- TranslationLang(Lang("mos_Latn", "Mossi")),
176
- TranslationLang(Lang("mri_Latn", "Maori"), Lang("mi", "Maori")),
177
- TranslationLang(Lang("mya_Mymr", "Burmese"), Lang("my", "Myanmar", "burmese")),
178
- TranslationLang(Lang("nld_Latn", "Dutch"), Lang("nl", "Dutch", "flemish")),
179
- TranslationLang(Lang("nno_Latn", "Norwegian Nynorsk"), Lang("nn", "Nynorsk")),
180
- TranslationLang(Lang("nob_Latn", "Norwegian Bokmål"), Lang("no", "Norwegian")),
181
- TranslationLang(Lang("npi_Deva", "Nepali"), Lang("ne", "Nepali")),
182
- TranslationLang(Lang("nso_Latn", "Northern Sotho"), None, Lang("ns", "Northern Sotho")),
183
- TranslationLang(Lang("nus_Latn", "Nuer")),
184
- TranslationLang(Lang("nya_Latn", "Nyanja")),
185
- TranslationLang(Lang("oci_Latn", "Occitan"), Lang("oc", "Occitan")),
186
- TranslationLang(Lang("gaz_Latn", "West Central Oromo")),
187
- TranslationLang(Lang("ory_Orya", "Odia"), None, Lang("or", "Oriya")),
188
- TranslationLang(Lang("pag_Latn", "Pangasinan")),
189
- TranslationLang(Lang("pan_Guru", "Eastern Panjabi"), Lang("pa", "Punjabi", "panjabi")),
190
- TranslationLang(Lang("pap_Latn", "Papiamento")),
191
- TranslationLang(Lang("pes_Arab", "Western Persian"), Lang("fa", "Persian")),
192
- TranslationLang(Lang("pol_Latn", "Polish"), Lang("pl", "Polish")),
193
- TranslationLang(Lang("por_Latn", "Portuguese"), Lang("pt", "Portuguese")),
194
- TranslationLang(Lang("prs_Arab", "Dari")),
195
- TranslationLang(Lang("pbt_Arab", "Southern Pashto"), Lang("ps", "Pashto", "pushto")),
196
- TranslationLang(Lang("quy_Latn", "Ayacucho Quechua")),
197
- TranslationLang(Lang("ron_Latn", "Romanian"), Lang("ro", "Romanian", "moldavian", "moldovan")),
198
- TranslationLang(Lang("run_Latn", "Rundi")),
199
- TranslationLang(Lang("rus_Cyrl", "Russian"), Lang("ru", "Russian")),
200
- TranslationLang(Lang("sag_Latn", "Sango")),
201
- TranslationLang(Lang("san_Deva", "Sanskrit"), Lang("sa", "Sanskrit")),
202
- TranslationLang(Lang("sat_Olck", "Santali")),
203
- TranslationLang(Lang("scn_Latn", "Sicilian")),
204
- TranslationLang(Lang("shn_Mymr", "Shan")),
205
- TranslationLang(Lang("sin_Sinh", "Sinhala"), Lang("si", "Sinhala", "sinhalese")),
206
- TranslationLang(Lang("slk_Latn", "Slovak"), Lang("sk", "Slovak")),
207
- TranslationLang(Lang("slv_Latn", "Slovenian"), Lang("sl", "Slovenian")),
208
- TranslationLang(Lang("smo_Latn", "Samoan")),
209
- TranslationLang(Lang("sna_Latn", "Shona"), Lang("sn", "Shona")),
210
- TranslationLang(Lang("snd_Arab", "Sindhi"), Lang("sd", "Sindhi")),
211
- TranslationLang(Lang("som_Latn", "Somali"), Lang("so", "Somali")),
212
- TranslationLang(Lang("sot_Latn", "Southern Sotho")),
213
- TranslationLang(Lang("spa_Latn", "Spanish"), Lang("es", "Spanish", "castilian")),
214
- TranslationLang(Lang("als_Latn", "Tosk Albanian"), Lang("sq", "Albanian")),
215
- TranslationLang(Lang("srd_Latn", "Sardinian")),
216
- TranslationLang(Lang("srp_Cyrl", "Serbian"), Lang("sr", "Serbian")),
217
- TranslationLang(Lang("ssw_Latn", "Swati"), None, Lang("ss", "Swati")),
218
- TranslationLang(Lang("sun_Latn", "Sundanese"), Lang("su", "Sundanese")),
219
- TranslationLang(Lang("swe_Latn", "Swedish"), Lang("sv", "Swedish")),
220
- TranslationLang(Lang("swh_Latn", "Swahili"), Lang("sw", "Swahili")),
221
- TranslationLang(Lang("szl_Latn", "Silesian")),
222
- TranslationLang(Lang("tam_Taml", "Tamil"), Lang("ta", "Tamil")),
223
- TranslationLang(Lang("tat_Cyrl", "Tatar"), Lang("tt", "Tatar")),
224
- TranslationLang(Lang("tel_Telu", "Telugu"), Lang("te", "Telugu")),
225
- TranslationLang(Lang("tgk_Cyrl", "Tajik"), Lang("tg", "Tajik")),
226
- TranslationLang(Lang("tgl_Latn", "Tagalog"), Lang("tl", "Tagalog")),
227
- TranslationLang(Lang("tha_Thai", "Thai"), Lang("th", "Thai")),
228
- TranslationLang(Lang("tir_Ethi", "Tigrinya")),
229
- TranslationLang(Lang("taq_Latn", "Tamasheq (Latin script)")),
230
- TranslationLang(Lang("taq_Tfng", "Tamasheq (Tifinagh script)")),
231
- TranslationLang(Lang("tpi_Latn", "Tok Pisin")),
232
- TranslationLang(Lang("tsn_Latn", "Tswana"), None, Lang("tn", "Tswana")),
233
- TranslationLang(Lang("tso_Latn", "Tsonga")),
234
- TranslationLang(Lang("tuk_Latn", "Turkmen"), Lang("tk", "Turkmen")),
235
- TranslationLang(Lang("tum_Latn", "Tumbuka")),
236
- TranslationLang(Lang("tur_Latn", "Turkish"), Lang("tr", "Turkish")),
237
- TranslationLang(Lang("twi_Latn", "Twi")),
238
- TranslationLang(Lang("tzm_Tfng", "Central Atlas Tamazight")),
239
- TranslationLang(Lang("uig_Arab", "Uyghur")),
240
- TranslationLang(Lang("ukr_Cyrl", "Ukrainian"), Lang("uk", "Ukrainian")),
241
- TranslationLang(Lang("umb_Latn", "Umbundu")),
242
- TranslationLang(Lang("urd_Arab", "Urdu"), Lang("ur", "Urdu")),
243
- TranslationLang(Lang("uzn_Latn", "Northern Uzbek"), Lang("uz", "Uzbek")),
244
- TranslationLang(Lang("vec_Latn", "Venetian")),
245
- TranslationLang(Lang("vie_Latn", "Vietnamese"), Lang("vi", "Vietnamese")),
246
- TranslationLang(Lang("war_Latn", "Waray")),
247
- TranslationLang(Lang("wol_Latn", "Wolof"), None, Lang("wo", "Wolof")),
248
- TranslationLang(Lang("xho_Latn", "Xhosa"), None, Lang("xh", "Xhosa")),
249
- TranslationLang(Lang("ydd_Hebr", "Eastern Yiddish"), Lang("yi", "Yiddish")),
250
- TranslationLang(Lang("yor_Latn", "Yoruba"), Lang("yo", "Yoruba")),
251
- TranslationLang(Lang("yue_Hant", "Yue Chinese"), Lang("yue", "cantonese"), Lang("zh", "Chinese (zh-yue)")),
252
- TranslationLang(Lang("zho_Hans", "Chinese (Simplified)"), Lang("zh", "Chinese (Simplified)", "Chinese", "mandarin")),
253
- TranslationLang(Lang("zho_Hant", "Chinese (Traditional)"), Lang("zh", "Chinese (Traditional)")),
254
- TranslationLang(Lang("zsm_Latn", "Standard Malay"), Lang("ms", "Malay")),
255
- TranslationLang(Lang("zul_Latn", "Zulu"), None, Lang("zu", "Zulu")),
256
- TranslationLang(None, Lang("br", "Breton")), # Both whisper and m2m100 support the Breton language, but nllb does not have this language.
257
  ]
258
 
259
 
@@ -263,6 +276,8 @@ _TO_LANG_NAME_M2M100 = {name.lower(): language for language in TranslationLangs
263
 
264
  _TO_LANG_NAME_WHISPER = {name.lower(): language for language in TranslationLangs if language.whisper is not None for name in language.whisper.names}
265
 
 
 
266
  _TO_LANG_CODE_WHISPER = {language.whisper.code.lower(): language for language in TranslationLangs if language.whisper is not None and len(language.whisper.code) > 0}
267
 
268
 
@@ -278,6 +293,10 @@ def get_lang_from_whisper_name(whisperName, default=None) -> TranslationLang:
278
  """Return the TranslationLang from the lang_name_whisper name."""
279
  return _TO_LANG_NAME_WHISPER.get(whisperName.lower() if whisperName else None, default)
280
 
 
 
 
 
281
  def get_lang_from_whisper_code(whisperCode, default=None) -> TranslationLang:
282
  """Return the TranslationLang from the lang_code_whisper."""
283
  return _TO_LANG_CODE_WHISPER.get(whisperCode, default)
@@ -290,6 +309,10 @@ def get_lang_m2m100_names(codes = []):
290
  """Return a list of m2m100 language names."""
291
  return list({name.lower(): None for language in TranslationLangs if language.m2m100 is not None and (len(codes) == 0 or any(code in language.m2m100.code for code in codes)) for name in language.m2m100.names}.keys())
292
 
 
 
 
 
293
  def get_lang_whisper_names():
294
  """Return a list of whisper language names."""
295
  return list(_TO_LANG_NAME_WHISPER.keys())
 
9
  return f"code:{self.code}, name:{self.names}"
10
 
11
  class TranslationLang():
12
+ def __init__(self, code: str, name: str):
13
+ self.nllb = Lang(code, name)
14
+ self.whisper = None
15
  self.m2m100 = None
16
+ self.seamlessTx = None
17
 
18
+ def Whisper(self, code: str, *names: str):
19
+ self.whisper = Lang(code, *names)
20
+ if self.m2m100 is None:
21
+ self.m2m100 = self.whisper
22
+ return self
23
+
24
+ def M2M100(self, code: str, name: str):
25
+ self.m2m100 = Lang(code, name)
26
+ return self
27
+
28
+ def SeamlessTx(self, code: str, name: str):
29
+ self.seamlessTx = Lang(code, name)
30
+ return self
31
 
32
  def __repr__(self):
33
  result = ""
34
+ if self.nllb:
35
  result += f"NLLB={self.nllb} "
36
+ if self.whisper:
37
  result += f"WHISPER={self.whisper} "
38
+ if self.m2m100:
39
+ result += f"M2M100={self.m2m100} "
40
+ if self.seamlessTx:
41
+ result += f"SeamlessTx={self.seamlessTx} "
42
  return f"Language {result}"
43
 
44
  """
 
62
  The available languages for m2m100 and whisper are almost identical. Most of the codes correspond to the ISO 639-1 standard. For detailed information, please refer to the official documentation provided.
63
  """
64
  TranslationLangs = [
65
+ TranslationLang("ace_Arab", "Acehnese (Arabic script)"),
66
+ TranslationLang("ace_Latn", "Acehnese (Latin script)"),
67
+ TranslationLang("acm_Arab", "Mesopotamian Arabic").Whisper("ar", "Arabic"),
68
+ TranslationLang("acq_Arab", "Ta’izzi-Adeni Arabic").Whisper("ar", "Arabic"),
69
+ TranslationLang("aeb_Arab", "Tunisian Arabic"),
70
+ TranslationLang("afr_Latn", "Afrikaans").Whisper("af", "Afrikaans").SeamlessTx("afr", "Afrikaans"),
71
+ TranslationLang("ajp_Arab", "South Levantine Arabic").Whisper("ar", "Arabic"),
72
+ TranslationLang("aka_Latn", "Akan"),
73
+ TranslationLang("amh_Ethi", "Amharic").Whisper("am", "Amharic").SeamlessTx("amh", "Amharic"),
74
+ TranslationLang("apc_Arab", "North Levantine Arabic").Whisper("ar", "Arabic"),
75
+ TranslationLang("arb_Arab", "Modern Standard Arabic").Whisper("ar", "Arabic").SeamlessTx("arb", "Modern Standard Arabic"),
76
+ TranslationLang("arb_Latn", "Modern Standard Arabic (Romanized)"),
77
+ TranslationLang("ars_Arab", "Najdi Arabic").Whisper("ar", "Arabic"),
78
+ TranslationLang("ary_Arab", "Moroccan Arabic").Whisper("ar", "Arabic").SeamlessTx("ary", "Moroccan Arabic"),
79
+ TranslationLang("arz_Arab", "Egyptian Arabic").Whisper("ar", "Arabic").SeamlessTx("arz", "Egyptian Arabic"),
80
+ TranslationLang("asm_Beng", "Assamese").Whisper("as", "Assamese").SeamlessTx("asm", "Assamese"),
81
+ TranslationLang("ast_Latn", "Asturian").M2M100("ast", "Asturian"),
82
+ TranslationLang("awa_Deva", "Awadhi"),
83
+ TranslationLang("ayr_Latn", "Central Aymara"),
84
+ TranslationLang("azb_Arab", "South Azerbaijani").Whisper("az", "Azerbaijani"),
85
+ TranslationLang("azj_Latn", "North Azerbaijani").Whisper("az", "Azerbaijani").SeamlessTx("azj", "North Azerbaijani"),
86
+ TranslationLang("bak_Cyrl", "Bashkir").Whisper("ba", "Bashkir"),
87
+ TranslationLang("bam_Latn", "Bambara"),
88
+ TranslationLang("ban_Latn", "Balinese"),
89
+ TranslationLang("bel_Cyrl", "Belarusian").Whisper("be", "Belarusian").SeamlessTx("bel", "Belarusian"),
90
+ TranslationLang("bem_Latn", "Bemba"),
91
+ TranslationLang("ben_Beng", "Bengali").Whisper("bn", "Bengali").SeamlessTx("ben", "Bengali"),
92
+ TranslationLang("bho_Deva", "Bhojpuri"),
93
+ TranslationLang("bjn_Arab", "Banjar (Arabic script)"),
94
+ TranslationLang("bjn_Latn", "Banjar (Latin script)"),
95
+ TranslationLang("bod_Tibt", "Standard Tibetan").Whisper("bo", "Tibetan"),
96
+ TranslationLang("bos_Latn", "Bosnian").Whisper("bs", "Bosnian").SeamlessTx("bos", "Bosnian"),
97
+ TranslationLang("bug_Latn", "Buginese"),
98
+ TranslationLang("bul_Cyrl", "Bulgarian").Whisper("bg", "Bulgarian").SeamlessTx("bul", "Bulgarian"),
99
+ TranslationLang("cat_Latn", "Catalan").Whisper("ca", "Catalan", "valencian").SeamlessTx("cat", "Catalan"),
100
+ TranslationLang("ceb_Latn", "Cebuano").M2M100("ceb", "Cebuano").SeamlessTx("ceb", "Cebuano"),
101
+ TranslationLang("ces_Latn", "Czech").Whisper("cs", "Czech").SeamlessTx("ces", "Czech"),
102
+ TranslationLang("cjk_Latn", "Chokwe"),
103
+ TranslationLang("ckb_Arab", "Central Kurdish").SeamlessTx("ckb", "Central Kurdish"),
104
+ TranslationLang("crh_Latn", "Crimean Tatar"),
105
+ TranslationLang("cym_Latn", "Welsh").Whisper("cy", "Welsh").SeamlessTx("cym", "Welsh"),
106
+ TranslationLang("dan_Latn", "Danish").Whisper("da", "Danish").SeamlessTx("dan", "Danish"),
107
+ TranslationLang("deu_Latn", "German").Whisper("de", "German").SeamlessTx("deu", "German"),
108
+ TranslationLang("dik_Latn", "Southwestern Dinka"),
109
+ TranslationLang("dyu_Latn", "Dyula"),
110
+ TranslationLang("dzo_Tibt", "Dzongkha"),
111
+ TranslationLang("ell_Grek", "Greek").Whisper("el", "Greek").SeamlessTx("ell", "Greek"),
112
+ TranslationLang("eng_Latn", "English").Whisper("en", "English").SeamlessTx("eng", "English"),
113
+ TranslationLang("epo_Latn", "Esperanto"),
114
+ TranslationLang("est_Latn", "Estonian").Whisper("et", "Estonian").SeamlessTx("est", "Estonian"),
115
+ TranslationLang("eus_Latn", "Basque").Whisper("eu", "Basque").SeamlessTx("eus", "Basque"),
116
+ TranslationLang("ewe_Latn", "Ewe"),
117
+ TranslationLang("fao_Latn", "Faroese").Whisper("fo", "Faroese"),
118
+ TranslationLang("fij_Latn", "Fijian"),
119
+ TranslationLang("fin_Latn", "Finnish").Whisper("fi", "Finnish").SeamlessTx("fin", "Finnish"),
120
+ TranslationLang("fon_Latn", "Fon"),
121
+ TranslationLang("fra_Latn", "French").Whisper("fr", "French").SeamlessTx("fra", "French"),
122
+ TranslationLang("fur_Latn", "Friulian"),
123
+ TranslationLang("fuv_Latn", "Nigerian Fulfulde").M2M100("ff", "Fulah").SeamlessTx("fuv", "Nigerian Fulfulde"),
124
+ TranslationLang("gla_Latn", "Scottish Gaelic").M2M100("gd", "Scottish Gaelic"),
125
+ TranslationLang("gle_Latn", "Irish").M2M100("ga", "Irish").SeamlessTx("gle", "Irish"),
126
+ TranslationLang("glg_Latn", "Galician").Whisper("gl", "Galician").SeamlessTx("glg", "Galician"),
127
+ TranslationLang("grn_Latn", "Guarani"),
128
+ TranslationLang("guj_Gujr", "Gujarati").Whisper("gu", "Gujarati").SeamlessTx("guj", "Gujarati"),
129
+ TranslationLang("hat_Latn", "Haitian Creole").Whisper("ht", "Haitian creole", "haitian"),
130
+ TranslationLang("hau_Latn", "Hausa").Whisper("ha", "Hausa"),
131
+ TranslationLang("heb_Hebr", "Hebrew").Whisper("he", "Hebrew").SeamlessTx("heb", "Hebrew"),
132
+ TranslationLang("hin_Deva", "Hindi").Whisper("hi", "Hindi").SeamlessTx("hin", "Hindi"),
133
+ TranslationLang("hne_Deva", "Chhattisgarhi"),
134
+ TranslationLang("hrv_Latn", "Croatian").Whisper("hr", "Croatian").SeamlessTx("hrv", "Croatian"),
135
+ TranslationLang("hun_Latn", "Hungarian").Whisper("hu", "Hungarian").SeamlessTx("hun", "Hungarian"),
136
+ TranslationLang("hye_Armn", "Armenian").Whisper("hy", "Armenian").SeamlessTx("hye", "Armenian"),
137
+ TranslationLang("ibo_Latn", "Igbo").M2M100("ig", "Igbo").SeamlessTx("ibo", "Igbo"),
138
+ TranslationLang("ilo_Latn", "Ilocano").M2M100("ilo", "Iloko"),
139
+ TranslationLang("ind_Latn", "Indonesian").Whisper("id", "Indonesian").SeamlessTx("ind", "Indonesian"),
140
+ TranslationLang("isl_Latn", "Icelandic").Whisper("is", "Icelandic").SeamlessTx("isl", "Icelandic"),
141
+ TranslationLang("ita_Latn", "Italian").Whisper("it", "Italian").SeamlessTx("ita", "Italian"),
142
+ TranslationLang("jav_Latn", "Javanese").Whisper("jw", "Javanese").M2M100("jv", "Javanese").SeamlessTx("jav", "Javanese"),
143
+ TranslationLang("jpn_Jpan", "Japanese").Whisper("ja", "Japanese").SeamlessTx("jpn", "Japanese"),
144
+ TranslationLang("kab_Latn", "Kabyle"),
145
+ TranslationLang("kac_Latn", "Jingpho"),
146
+ TranslationLang("kam_Latn", "Kamba"),
147
+ TranslationLang("kan_Knda", "Kannada").Whisper("kn", "Kannada").SeamlessTx("kan", "Kannada"),
148
+ TranslationLang("kas_Arab", "Kashmiri (Arabic script)"),
149
+ TranslationLang("kas_Deva", "Kashmiri (Devanagari script)"),
150
+ TranslationLang("kat_Geor", "Georgian").Whisper("ka", "Georgian").SeamlessTx("kat", "Georgian"),
151
+ TranslationLang("knc_Arab", "Central Kanuri (Arabic script)"),
152
+ TranslationLang("knc_Latn", "Central Kanuri (Latin script)"),
153
+ TranslationLang("kaz_Cyrl", "Kazakh").Whisper("kk", "Kazakh").SeamlessTx("kaz", "Kazakh"),
154
+ TranslationLang("kbp_Latn", "Kabiyè"),
155
+ TranslationLang("kea_Latn", "Kabuverdianu"),
156
+ TranslationLang("khm_Khmr", "Khmer").Whisper("km", "Khmer").SeamlessTx("khm", "Khmer"),
157
+ TranslationLang("kik_Latn", "Kikuyu"),
158
+ TranslationLang("kin_Latn", "Kinyarwanda"),
159
+ TranslationLang("kir_Cyrl", "Kyrgyz").SeamlessTx("kir", "Kyrgyz"),
160
+ TranslationLang("kmb_Latn", "Kimbundu"),
161
+ TranslationLang("kmr_Latn", "Northern Kurdish"),
162
+ TranslationLang("kon_Latn", "Kikongo"),
163
+ TranslationLang("kor_Hang", "Korean").Whisper("ko", "Korean").SeamlessTx("kor", "Korean"),
164
+ TranslationLang("lao_Laoo", "Lao").Whisper("lo", "Lao").SeamlessTx("lao", "Lao"),
165
+ TranslationLang("lij_Latn", "Ligurian"),
166
+ TranslationLang("lim_Latn", "Limburgish"),
167
+ TranslationLang("lin_Latn", "Lingala").Whisper("ln", "Lingala"),
168
+ TranslationLang("lit_Latn", "Lithuanian").Whisper("lt", "Lithuanian").SeamlessTx("lit", "Lithuanian"),
169
+ TranslationLang("lmo_Latn", "Lombard"),
170
+ TranslationLang("ltg_Latn", "Latgalian"),
171
+ TranslationLang("ltz_Latn", "Luxembourgish").Whisper("lb", "Luxembourgish", "letzeburgesch"),
172
+ TranslationLang("lua_Latn", "Luba-Kasai"),
173
+ TranslationLang("lug_Latn", "Ganda").M2M100("lg", "Ganda").SeamlessTx("lug", "Ganda"),
174
+ TranslationLang("luo_Latn", "Luo").SeamlessTx("luo", "Luo"),
175
+ TranslationLang("lus_Latn", "Mizo"),
176
+ TranslationLang("lvs_Latn", "Standard Latvian").Whisper("lv", "Latvian").SeamlessTx("lvs", "Standard Latvian"),
177
+ TranslationLang("mag_Deva", "Magahi"),
178
+ TranslationLang("mai_Deva", "Maithili").SeamlessTx("mai", "Maithili"),
179
+ TranslationLang("mal_Mlym", "Malayalam").Whisper("ml", "Malayalam").SeamlessTx("mal", "Malayalam"),
180
+ TranslationLang("mar_Deva", "Marathi").Whisper("mr", "Marathi").SeamlessTx("mar", "Marathi"),
181
+ TranslationLang("min_Arab", "Minangkabau (Arabic script)"),
182
+ TranslationLang("min_Latn", "Minangkabau (Latin script)"),
183
+ TranslationLang("mkd_Cyrl", "Macedonian").Whisper("mk", "Macedonian").SeamlessTx("mkd", "Macedonian"),
184
+ TranslationLang("plt_Latn", "Plateau Malagasy").Whisper("mg", "Malagasy"),
185
+ TranslationLang("mlt_Latn", "Maltese").Whisper("mt", "Maltese").SeamlessTx("mlt", "Maltese"),
186
+ TranslationLang("mni_Beng", "Meitei (Bengali script)").SeamlessTx("mni", "Meitei"),
187
+ TranslationLang("khk_Cyrl", "Halh Mongolian").Whisper("mn", "Mongolian").SeamlessTx("khk", "Halh Mongolian"),
188
+ TranslationLang("mos_Latn", "Mossi"),
189
+ TranslationLang("mri_Latn", "Maori").Whisper("mi", "Maori"),
190
+ TranslationLang("mya_Mymr", "Burmese").Whisper("my", "Myanmar", "burmese").SeamlessTx("mya", "Burmese"),
191
+ TranslationLang("nld_Latn", "Dutch").Whisper("nl", "Dutch", "flemish").SeamlessTx("nld", "Dutch"),
192
+ TranslationLang("nno_Latn", "Norwegian Nynorsk").Whisper("nn", "Nynorsk").SeamlessTx("nno", "Norwegian Nynorsk"),
193
+ TranslationLang("nob_Latn", "Norwegian Bokmål").Whisper("no", "Norwegian").SeamlessTx("nob", "Norwegian Bokmål"),
194
+ TranslationLang("npi_Deva", "Nepali").Whisper("ne", "Nepali").SeamlessTx("npi", "Nepali"),
195
+ TranslationLang("nso_Latn", "Northern Sotho").M2M100("ns", "Northern Sotho"),
196
+ TranslationLang("nus_Latn", "Nuer"),
197
+ TranslationLang("nya_Latn", "Nyanja").SeamlessTx("nya", "Nyanja"),
198
+ TranslationLang("oci_Latn", "Occitan").Whisper("oc", "Occitan"),
199
+ TranslationLang("gaz_Latn", "West Central Oromo").SeamlessTx("gaz", "West Central Oromo"),
200
+ TranslationLang("ory_Orya", "Odia").M2M100("or", "Oriya").SeamlessTx("ory", "Odia"),
201
+ TranslationLang("pag_Latn", "Pangasinan"),
202
+ TranslationLang("pan_Guru", "Eastern Panjabi").Whisper("pa", "Punjabi", "panjabi").SeamlessTx("pan", "Punjabi"),
203
+ TranslationLang("pap_Latn", "Papiamento"),
204
+ TranslationLang("pes_Arab", "Western Persian").Whisper("fa", "Persian").SeamlessTx("pes", "Western Persian"),
205
+ TranslationLang("pol_Latn", "Polish").Whisper("pl", "Polish").SeamlessTx("pol", "Polish"),
206
+ TranslationLang("por_Latn", "Portuguese").Whisper("pt", "Portuguese").SeamlessTx("por", "Portuguese"),
207
+ TranslationLang("prs_Arab", "Dari"),
208
+ TranslationLang("pbt_Arab", "Southern Pashto").Whisper("ps", "Pashto", "pushto").SeamlessTx("pbt", "Southern Pashto"),
209
+ TranslationLang("quy_Latn", "Ayacucho Quechua"),
210
+ TranslationLang("ron_Latn", "Romanian").Whisper("ro", "Romanian", "moldavian", "moldovan").SeamlessTx("ron", "Romanian"),
211
+ TranslationLang("run_Latn", "Rundi"),
212
+ TranslationLang("rus_Cyrl", "Russian").Whisper("ru", "Russian").SeamlessTx("rus", "Russian"),
213
+ TranslationLang("sag_Latn", "Sango"),
214
+ TranslationLang("san_Deva", "Sanskrit").Whisper("sa", "Sanskrit"),
215
+ TranslationLang("sat_Olck", "Santali"),
216
+ TranslationLang("scn_Latn", "Sicilian"),
217
+ TranslationLang("shn_Mymr", "Shan"),
218
+ TranslationLang("sin_Sinh", "Sinhala").Whisper("si", "Sinhala", "sinhalese"),
219
+ TranslationLang("slk_Latn", "Slovak").Whisper("sk", "Slovak").SeamlessTx("slk", "Slovak"),
220
+ TranslationLang("slv_Latn", "Slovenian").Whisper("sl", "Slovenian").SeamlessTx("slv", "Slovenian"),
221
+ TranslationLang("smo_Latn", "Samoan"),
222
+ TranslationLang("sna_Latn", "Shona").Whisper("sn", "Shona").SeamlessTx("sna", "Shona"),
223
+ TranslationLang("snd_Arab", "Sindhi").Whisper("sd", "Sindhi").SeamlessTx("snd", "Sindhi"),
224
+ TranslationLang("som_Latn", "Somali").Whisper("so", "Somali").SeamlessTx("som", "Somali"),
225
+ TranslationLang("sot_Latn", "Southern Sotho"),
226
+ TranslationLang("spa_Latn", "Spanish").Whisper("es", "Spanish", "castilian").SeamlessTx("spa", "Spanish"),
227
+ TranslationLang("als_Latn", "Tosk Albanian").Whisper("sq", "Albanian"),
228
+ TranslationLang("srd_Latn", "Sardinian"),
229
+ TranslationLang("srp_Cyrl", "Serbian").Whisper("sr", "Serbian").SeamlessTx("srp", "Serbian"),
230
+ TranslationLang("ssw_Latn", "Swati").M2M100("ss", "Swati"),
231
+ TranslationLang("sun_Latn", "Sundanese").Whisper("su", "Sundanese"),
232
+ TranslationLang("swe_Latn", "Swedish").Whisper("sv", "Swedish").SeamlessTx("swe", "Swedish"),
233
+ TranslationLang("swh_Latn", "Swahili").Whisper("sw", "Swahili").SeamlessTx("swh", "Swahili"),
234
+ TranslationLang("szl_Latn", "Silesian"),
235
+ TranslationLang("tam_Taml", "Tamil").Whisper("ta", "Tamil").SeamlessTx("tam", "Tamil"),
236
+ TranslationLang("tat_Cyrl", "Tatar").Whisper("tt", "Tatar"),
237
+ TranslationLang("tel_Telu", "Telugu").Whisper("te", "Telugu").SeamlessTx("tel", "Telugu"),
238
+ TranslationLang("tgk_Cyrl", "Tajik").Whisper("tg", "Tajik").SeamlessTx("tgk", "Tajik"),
239
+ TranslationLang("tgl_Latn", "Tagalog").Whisper("tl", "Tagalog").SeamlessTx("tgl", "Tagalog"),
240
+ TranslationLang("tha_Thai", "Thai").Whisper("th", "Thai").SeamlessTx("tha", "Thai"),
241
+ TranslationLang("tir_Ethi", "Tigrinya"),
242
+ TranslationLang("taq_Latn", "Tamasheq (Latin script)"),
243
+ TranslationLang("taq_Tfng", "Tamasheq (Tifinagh script)"),
244
+ TranslationLang("tpi_Latn", "Tok Pisin"),
245
+ TranslationLang("tsn_Latn", "Tswana").M2M100("tn", "Tswana"),
246
+ TranslationLang("tso_Latn", "Tsonga"),
247
+ TranslationLang("tuk_Latn", "Turkmen").Whisper("tk", "Turkmen"),
248
+ TranslationLang("tum_Latn", "Tumbuka"),
249
+ TranslationLang("tur_Latn", "Turkish").Whisper("tr", "Turkish").SeamlessTx("tur", "Turkish"),
250
+ TranslationLang("twi_Latn", "Twi"),
251
+ TranslationLang("tzm_Tfng", "Central Atlas Tamazight"),
252
+ TranslationLang("uig_Arab", "Uyghur"),
253
+ TranslationLang("ukr_Cyrl", "Ukrainian").Whisper("uk", "Ukrainian").SeamlessTx("ukr", "Ukrainian"),
254
+ TranslationLang("umb_Latn", "Umbundu"),
255
+ TranslationLang("urd_Arab", "Urdu").Whisper("ur", "Urdu").SeamlessTx("urd", "Urdu"),
256
+ TranslationLang("uzn_Latn", "Northern Uzbek").Whisper("uz", "Uzbek").SeamlessTx("uzn", "Northern Uzbek"),
257
+ TranslationLang("vec_Latn", "Venetian"),
258
+ TranslationLang("vie_Latn", "Vietnamese").Whisper("vi", "Vietnamese").SeamlessTx("vie", "Vietnamese"),
259
+ TranslationLang("war_Latn", "Waray"),
260
+ TranslationLang("wol_Latn", "Wolof").M2M100("wo", "Wolof"),
261
+ TranslationLang("xho_Latn", "Xhosa").M2M100("xh", "Xhosa"),
262
+ TranslationLang("ydd_Hebr", "Eastern Yiddish").Whisper("yi", "Yiddish"),
263
+ TranslationLang("yor_Latn", "Yoruba").Whisper("yo", "Yoruba").SeamlessTx("yor", "Yoruba"),
264
+ TranslationLang("yue_Hant", "Yue Chinese").Whisper("yue", "cantonese").M2M100("zh", "Chinese (zh-yue)").SeamlessTx("yue", "Cantonese"),
265
+ TranslationLang("zho_Hans", "Chinese (Simplified)").Whisper("zh", "Chinese (Simplified)", "Chinese", "mandarin").SeamlessTx("cmn", "Mandarin Chinese (Simplified)"),
266
+ TranslationLang("zho_Hant", "Chinese (Traditional)").Whisper("zh", "Chinese (Traditional)").SeamlessTx("cmn_Hant", "Mandarin Chinese (Traditional)"),
267
+ TranslationLang("zsm_Latn", "Standard Malay").Whisper("ms", "Malay").SeamlessTx("zsm", "Standard Malay"),
268
+ TranslationLang("zul_Latn", "Zulu").M2M100("zu", "Zulu").SeamlessTx("zul", "Zulu"),
269
+ # TranslationLang(None, None).Whisper("br", "Breton"), # Both whisper and m2m100 support the Breton language, but nllb does not have this language.
270
  ]
271
 
272
 
 
276
 
277
  _TO_LANG_NAME_WHISPER = {name.lower(): language for language in TranslationLangs if language.whisper is not None for name in language.whisper.names}
278
 
279
+ _TO_LANG_NAME_SeamlessTx = {name.lower(): language for language in TranslationLangs if language.seamlessTx is not None for name in language.seamlessTx.names}
280
+
281
  _TO_LANG_CODE_WHISPER = {language.whisper.code.lower(): language for language in TranslationLangs if language.whisper is not None and len(language.whisper.code) > 0}
282
 
283
 
 
293
  """Return the TranslationLang from the lang_name_whisper name."""
294
  return _TO_LANG_NAME_WHISPER.get(whisperName.lower() if whisperName else None, default)
295
 
296
+ def get_lang_from_seamlessTx_name(seamlessTxName, default=None) -> TranslationLang:
297
+ """Return the TranslationLang from the lang_name_seamlessTx name."""
298
+ return _TO_LANG_NAME_SeamlessTx.get(seamlessTxName.lower() if seamlessTxName else None, default)
299
+
300
  def get_lang_from_whisper_code(whisperCode, default=None) -> TranslationLang:
301
  """Return the TranslationLang from the lang_code_whisper."""
302
  return _TO_LANG_CODE_WHISPER.get(whisperCode, default)
 
309
  """Return a list of m2m100 language names."""
310
  return list({name.lower(): None for language in TranslationLangs if language.m2m100 is not None and (len(codes) == 0 or any(code in language.m2m100.code for code in codes)) for name in language.m2m100.names}.keys())
311
 
312
+ def get_lang_seamlessTx_names(codes = []):
313
+ """Return a list of seamlessTx language names."""
314
+ return list({name.lower(): None for language in TranslationLangs if language.seamlessTx is not None and (len(codes) == 0 or any(code in language.seamlessTx.code for code in codes)) for name in language.seamlessTx.names}.keys())
315
+
316
  def get_lang_whisper_names():
317
  """Return a list of whisper language names."""
318
  return list(_TO_LANG_NAME_WHISPER.keys())
src/translation/translationModel.py CHANGED
@@ -27,7 +27,7 @@ class TranslationModel:
27
  localFilesOnly: bool = False,
28
  loadModel: bool = False,
29
  ):
30
- """Initializes the M2M100 / Nllb-200 / mt5 / ALMA / madlad400 translation model.
31
 
32
  Args:
33
  modelConfig: Config of the model to use (distilled-600M, distilled-1.3B,
@@ -212,7 +212,7 @@ class TranslationModel:
212
  elif "GGUF" in self.modelPath:
213
  pass
214
  elif self.usingBitsandbytes == None:
215
- kwargsPipeline.update({"device": self.device})
216
  elif self.usingBitsandbytes == "int8":
217
  kwargsModel.update({"load_in_8bit": True, "llm_int8_enable_fp32_cpu_offload": True})
218
  elif self.usingBitsandbytes == "int4":
@@ -277,6 +277,14 @@ class TranslationModel:
277
  self.transTokenizer = transformers.T5Tokenizer.from_pretrained(**kwargsTokenizer)
278
  self.transModel = transformers.T5ForConditionalGeneration.from_pretrained(**kwargsModel)
279
  kwargsPipeline.update({"task": "text2text-generation", "model": self.transModel, "tokenizer": self.transTokenizer})
 
 
 
 
 
 
 
 
280
  else:
281
  kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelPath})
282
  self.transTokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
@@ -286,7 +294,7 @@ class TranslationModel:
286
  kwargsPipeline.update({"src_lang": self.whisperLang.m2m100.code, "tgt_lang": self.translationLang.m2m100.code})
287
  else: #NLLB
288
  kwargsPipeline.update({"src_lang": self.whisperLang.nllb.code, "tgt_lang": self.translationLang.nllb.code})
289
- if "ct2" not in self.modelPath:
290
  self.transTranslator = transformers.pipeline(**kwargsPipeline)
291
  except Exception as e:
292
  self.release_vram()
@@ -310,6 +318,8 @@ class TranslationModel:
310
  if getattr(self, "transModel", None) is not None and getattr(self.transModel, "unload_model", None) is not None:
311
  self.transModel.unload_model()
312
 
 
 
313
  if getattr(self, "transTokenizer", None) is not None:
314
  del self.transTokenizer
315
  if getattr(self, "transModel", None) is not None:
@@ -392,6 +402,13 @@ class TranslationModel:
392
  elif "madlad400" in self.modelPath:
393
  output = self.transTranslator(self.madlad400Prefix + text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams) #, num_return_sequences=2
394
  result = output[0]['generated_text']
 
 
 
 
 
 
 
395
  else: #M2M100 & NLLB
396
  output = self.transTranslator(text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
397
  result = output[0]['translation_text']
@@ -406,7 +423,8 @@ _MODELS = ["nllb-200",
406
  "m2m100",
407
  "mt5",
408
  "ALMA",
409
- "madlad400"]
 
410
 
411
  def check_model_name(name):
412
  return any(allowed_name in name for allowed_name in _MODELS)
@@ -466,7 +484,9 @@ def download_model(
466
  "model.safetensors.index.json",
467
  "quantize_config.json",
468
  "tokenizer.model",
469
- "vocabulary.json"
 
 
470
  ]
471
 
472
  kwargs = {
 
27
  localFilesOnly: bool = False,
28
  loadModel: bool = False,
29
  ):
30
+ """Initializes the M2M100 / Nllb-200 / mt5 / ALMA / madlad400 / seamless-m4t translation model.
31
 
32
  Args:
33
  modelConfig: Config of the model to use (distilled-600M, distilled-1.3B,
 
212
  elif "GGUF" in self.modelPath:
213
  pass
214
  elif self.usingBitsandbytes == None:
215
+ kwargsPipeline.update({"device": self.device})
216
  elif self.usingBitsandbytes == "int8":
217
  kwargsModel.update({"load_in_8bit": True, "llm_int8_enable_fp32_cpu_offload": True})
218
  elif self.usingBitsandbytes == "int4":
 
277
  self.transTokenizer = transformers.T5Tokenizer.from_pretrained(**kwargsTokenizer)
278
  self.transModel = transformers.T5ForConditionalGeneration.from_pretrained(**kwargsModel)
279
  kwargsPipeline.update({"task": "text2text-generation", "model": self.transModel, "tokenizer": self.transTokenizer})
280
+ elif "seamless" in self.modelPath:
281
+ self.transProcessor = transformers.AutoProcessor.from_pretrained(self.modelPath)
282
+ if "v2" in self.modelPath:
283
+ self.transModel = transformers.SeamlessM4Tv2Model.from_pretrained(**kwargsModel)
284
+ else:
285
+ self.transModel = transformers.SeamlessM4TModel.from_pretrained(**kwargsModel)
286
+ if self.device != "cpu" and "load_in_8bit" not in kwargsModel and "load_in_4bit" not in kwargsModel:
287
+ self.transModel.to(self.device)
288
  else:
289
  kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelPath})
290
  self.transTokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
 
294
  kwargsPipeline.update({"src_lang": self.whisperLang.m2m100.code, "tgt_lang": self.translationLang.m2m100.code})
295
  else: #NLLB
296
  kwargsPipeline.update({"src_lang": self.whisperLang.nllb.code, "tgt_lang": self.translationLang.nllb.code})
297
+ if not any(name in self.modelPath for name in ["ct2", "seamless"]):
298
  self.transTranslator = transformers.pipeline(**kwargsPipeline)
299
  except Exception as e:
300
  self.release_vram()
 
318
  if getattr(self, "transModel", None) is not None and getattr(self.transModel, "unload_model", None) is not None:
319
  self.transModel.unload_model()
320
 
321
+ if getattr(self, "transProcessor") is not None:
322
+ del self.transProcessor
323
  if getattr(self, "transTokenizer", None) is not None:
324
  del self.transTokenizer
325
  if getattr(self, "transModel", None) is not None:
 
402
  elif "madlad400" in self.modelPath:
403
  output = self.transTranslator(self.madlad400Prefix + text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams) #, num_return_sequences=2
404
  result = output[0]['generated_text']
405
+ elif "seamless" in self.modelPath:
406
+ if self.device != "cpu":
407
+ text_inputs = self.transProcessor(text = text, src_lang=self.whisperLang.seamlessTx.code, return_tensors="pt").to(self.device)
408
+ else:
409
+ text_inputs = self.transProcessor(text = text, src_lang=self.whisperLang.seamlessTx.code, return_tensors="pt")
410
+ output_tokens = self.transModel.generate(**text_inputs, tgt_lang=self.translationLang.seamlessTx.code, generate_speech=False, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
411
+ result = self.transProcessor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
412
  else: #M2M100 & NLLB
413
  output = self.transTranslator(text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
414
  result = output[0]['translation_text']
 
423
  "m2m100",
424
  "mt5",
425
  "ALMA",
426
+ "madlad400",
427
+ "seamless"]
428
 
429
  def check_model_name(name):
430
  return any(allowed_name in name for allowed_name in _MODELS)
 
484
  "model.safetensors.index.json",
485
  "quantize_config.json",
486
  "tokenizer.model",
487
+ "vocabulary.json",
488
+ "preprocessor_config.json",
489
+ "added_tokens.json"
490
  ]
491
 
492
  kwargs = {