Spaces:
Sleeping
Sleeping
import openai | |
import sqlite3 | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
import gradio as gr | |
import os | |
# Your OpenAI API Key | |
openai.api_key = os.environ["Secret"] | |
# Connect to the SQLite database | |
db_path = "text_chunks_with_embeddings.db" # Update with the path to your database | |
conn = sqlite3.connect(db_path) | |
cursor = conn.cursor() | |
# Fetch the rows from the database | |
cursor.execute("SELECT text, embedding FROM chunks") | |
rows = cursor.fetchall() | |
# Create a dictionary to store the text and embedding for each row | |
dictionary_of_vectors = {} | |
for row in rows: | |
text = row[0] | |
embedding_str = row[1] | |
embedding = np.fromstring(embedding_str, sep=' ') | |
dictionary_of_vectors[text] = embedding | |
# Close the connection | |
conn.close() | |
def find_closest_neighbors(vector): | |
cosine_similarities = {} | |
for key, value in dictionary_of_vectors.items(): | |
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0] | |
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True) | |
return sorted_cosine_similarities[0:4] | |
def generate_embedding(text): | |
response = openai.Embedding.create( | |
input=text, | |
engine="text-embedding-ada-002" | |
) | |
embedding = np.array(response['data'][0]['embedding']) | |
return embedding | |
def context_gpt_response(question): | |
vector = generate_embedding(question) | |
match_list = find_closest_neighbors(vector) | |
context = '' | |
for match in match_list: | |
context += str(match[0]) | |
context = context[:1500] # Limit context to the last 1500 characters | |
prep = f"This is an OpenAI model designed to answer questions specific to grant-making applications for an aquarium. Here is some question-specific context: {context}. Q: {question} A: " | |
response = openai.Completion.create( | |
engine="gpt-4", | |
prompt=prep, | |
temperature=0.7, | |
max_tokens=220, | |
) | |
return response['choices'][0]['text'] | |
iface = gr.Interface(fn=context_gpt_response, inputs="text", outputs="text", title="Aquarium Grant Application Chatbot", description="Context-specific chatbot for grant writing", examples=[["What types of projects are eligible for funding?"], ["Tell me more about the application process."], ["What will be the most impactful grant opportunities?"]]) | |
iface.launch() |