Spaces:
Runtime error
Runtime error
File size: 2,235 Bytes
841be4d 2f0e820 9b9725a 841be4d cfb5815 841be4d cfb5815 841be4d 63779d2 841be4d 5659063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import io
import os
import warnings
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
import gradio as gr
stability_api = client.StabilityInference(
key=os.environ["Secret"],
verbose=True,
)
def infer(prompt):
# the object returned is a python generator
answers = stability_api.generate(
prompt=f"Beautiful Portait of a {prompt} made out of flowers 💐 🌺 🌸 , artstation winner by Victo Ngai, Kilian Eng, vibrant colors, winning-award masterpiece, aesthetic octane render, 8K HD",
height =640
)
# iterating over the generator produces the api response
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img = Image.open(io.BytesIO(artifact.binary))
return img
block = gr.Blocks(css=".container { max-width: 600px; margin: auto; }")
num_samples = 1
with block as demo:
gr.Markdown("<h1><center>Flower Diffusion</center></h1>")
gr.Markdown(
"Get a pretty flowery image from any prompt - keep it simple!"
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
value = "Kitty cat",
label="Enter your prompt", show_label=False, max_lines=1
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Run").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Image()
text.submit(infer, inputs=[text], outputs=gallery)
btn.click(infer, inputs=[text], outputs=gallery)
demo.launch(debug=True, enable_queue = True) |