|
import sklearn |
|
import sqlite3 |
|
import numpy as np |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import openai |
|
import os |
|
import gradio as gr |
|
|
|
|
|
openai.api_key = os.environ["Secret"] |
|
|
|
def find_closest_neighbors(vector1, dictionary_of_vectors): |
|
""" |
|
Takes a vector and a dictionary of vectors and returns the three closest neighbors |
|
""" |
|
vector = openai.Embedding.create( |
|
input=vector1, |
|
engine="text-embedding-ada-002" |
|
)['data'][0]['embedding'] |
|
|
|
vector = np.array(vector) |
|
|
|
cosine_similarities = {} |
|
for key, value in dictionary_of_vectors.items(): |
|
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0] |
|
|
|
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True) |
|
match_list = sorted_cosine_similarities[0:4] |
|
|
|
return match_list |
|
|
|
def predict(message, history): |
|
|
|
conn = sqlite3.connect('QRIdatabase7 (1).db') |
|
cursor = conn.cursor() |
|
cursor.execute('''SELECT text, embedding FROM chunks''') |
|
rows = cursor.fetchall() |
|
|
|
dictionary_of_vectors = {} |
|
for row in rows: |
|
text = row[0] |
|
embedding_str = row[1] |
|
embedding = np.fromstring(embedding_str, sep=' ') |
|
dictionary_of_vectors[text] = embedding |
|
conn.close() |
|
|
|
|
|
match_list = find_closest_neighbors(message, dictionary_of_vectors) |
|
context = '' |
|
for match in match_list: |
|
context += str(match[0]) |
|
context = context[:-1500] |
|
|
|
prep = f"This is an OpenAI model tuned to answer questions specific to the Qualia Research institute, a research institute that focuses on consciousness. Here is some question-specific context, and then the Question to answer, related to consciousness, the human experience, and phenomenology: {context}. Here is a question specific to QRI and consciousness in general Q: {message} A: " |
|
|
|
history_openai_format = [] |
|
for human, assistant in history: |
|
history_openai_format.append({"role": "user", "content": human }) |
|
history_openai_format.append({"role": "assistant", "content":assistant}) |
|
history_openai_format.append({"role": "user", "content": prep}) |
|
|
|
response = openai.ChatCompletion.create( |
|
model='gpt-4', |
|
messages= history_openai_format, |
|
temperature=1.0, |
|
stream=True |
|
) |
|
|
|
partial_message = "" |
|
for chunk in response: |
|
if len(chunk['choices'][0]['delta']) != 0: |
|
partial_message = partial_message + chunk['choices'][0]['delta']['content'] |
|
yield partial_message |
|
|
|
demo = gr.ChatInterface(predict).queue() |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|