File size: 30,205 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc5ddd
24f9881
 
4bc5ddd
 
24f9881
 
 
 
 
 
 
 
 
 
4bc5ddd
 
24f9881
 
 
 
 
81ff5e6
24f9881
 
 
 
 
 
 
 
67d1bfd
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ff5e6
 
24f9881
 
 
 
 
 
81ff5e6
 
24f9881
 
 
 
 
81ff5e6
24f9881
 
 
 
 
81ff5e6
 
24f9881
 
 
 
81ff5e6
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc5ddd
 
24f9881
 
4bc5ddd
 
24f9881
 
 
 
4bc5ddd
 
 
 
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
4bc5ddd
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
6a43180
24f9881
 
 
 
 
 
 
7d1d8e0
24f9881
 
 
 
4bc5ddd
 
 
 
 
 
24f9881
 
 
 
 
 
 
 
 
 
 
4bc5ddd
 
 
 
 
 
 
 
24f9881
 
 
 
 
 
 
 
 
 
 
a150029
 
 
24f9881
 
 
 
 
 
 
 
7d1d8e0
24f9881
 
 
4bc5ddd
 
 
 
 
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ff5e6
 
 
24f9881
81ff5e6
 
24f9881
81ff5e6
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc5ddd
 
 
 
 
24f9881
4bc5ddd
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ff5e6
24f9881
81ff5e6
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc5ddd
 
 
 
 
24f9881
4bc5ddd
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ff5e6
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a150029
67d1bfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# Copyright (C) 2023, Computer Vision Lab, Seoul National University, https://cv.snu.ac.kr
#
# Copyright 2023 LucidDreamer Authors
#
# Computer Vision Lab, SNU, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from the Computer Vision Lab, SNU or
# its affiliates is strictly prohibited.
#
# For permission requests, please contact robot0321@snu.ac.kr, esw0116@snu.ac.kr, namhj28@gmail.com, jarin.lee@gmail.com.
import os
import glob
import json
import time
import datetime
import warnings
import shutil
from random import randint
from argparse import ArgumentParser

warnings.filterwarnings(action='ignore')

import pickle
import imageio
import numpy as np
import open3d as o3d
from PIL import Image
from tqdm import tqdm
from scipy.interpolate import griddata as interp_grid
from scipy.ndimage import minimum_filter, maximum_filter

import torch
import torch.nn.functional as F
import gradio as gr
from diffusers import (
    StableDiffusionInpaintPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetInpaintPipeline)

from arguments import GSParams, CameraParams
from gaussian_renderer import render
from scene import Scene, GaussianModel
from scene.dataset_readers import loadCameraPreset
from utils.loss import l1_loss, ssim
from utils.camera import load_json
from utils.depth import colorize
from utils.lama import LaMa
from utils.trajectory import get_camerapaths, get_pcdGenPoses


get_kernel = lambda p: torch.ones(1, 1, p * 2 + 1, p * 2 + 1).to('cuda')
t2np = lambda x: (x[0].permute(1, 2, 0).clamp_(0, 1) * 255.0).to(torch.uint8).detach().cpu().numpy()
np2t = lambda x: (torch.as_tensor(x).to(torch.float32).permute(2, 0, 1) / 255.0)[None, ...].to('cuda')
pad_mask = lambda x, padamount=1: t2np(
    F.conv2d(np2t(x[..., None]), get_kernel(padamount), padding=padamount))[..., 0].astype(bool)


class LucidDreamer:
    def __init__(self, for_gradio=True, save_dir=None):
        self.opt = GSParams()
        self.cam = CameraParams()
        self.save_dir = save_dir
        self.for_gradio = for_gradio
        self.root = 'outputs'
        self.default_model = 'SD1.5 (default)'
        self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')

        self.gaussians = GaussianModel(self.opt.sh_degree)

        bg_color = [1, 1, 1] if self.opt.white_background else [0, 0, 0]
        self.background = torch.tensor(bg_color, dtype=torch.float32, device='cuda')
        
        self.rgb_model = StableDiffusionInpaintPipeline.from_pretrained(
            'runwayml/stable-diffusion-inpainting', revision='fp16', torch_dtype=torch.float16).to('cuda')
            # 'stablediffusion/SD1-5', revision='fp16', torch_dtype=torch.float16).to('cuda')
        self.d_model = torch.hub.load('./ZoeDepth', 'ZoeD_N', source='local', pretrained=True).to('cuda')
        self.controlnet = None
        self.lama = None
        self.current_model = self.default_model

    def load_model(self, model_name, use_lama=True):
        if model_name is None:
            model_name = self.default_model
        if self.current_model == model_name:
            return
        if model_name == self.default_model:
            self.controlnet = None
            self.lama = None
            self.rgb_model = StableDiffusionInpaintPipeline.from_pretrained(
                #  'runwayml/stable-diffusion-inpainting',
                'stablediffusion/SD1-5',
                revision='fp16',
                torch_dtype=torch.float16,
                safety_checker=None,
            ).to('cuda')
        else:
            if self.controlnet is None:
                self.controlnet = ControlNetModel.from_pretrained(
                    'lllyasviel/control_v11p_sd15_inpaint', torch_dtype=torch.float16)
            if self.lama is None and use_lama:
                self.lama = LaMa('cuda')
            self.rgb_model = StableDiffusionControlNetInpaintPipeline.from_pretrained(
                f'stablediffusion/{model_name}',
                controlnet=self.controlnet,
                revision='fp16',
                torch_dtype=torch.float16,
                safety_checker=None,
            ).to('cuda')
            # self.rgb_model.enable_model_cpu_offload()
        torch.cuda.empty_cache()
        self.current_model = model_name

    def rgb(self, prompt, image, negative_prompt='', generator=None, num_inference_steps=50, mask_image=None):
        image_pil = Image.fromarray(np.round(image * 255.).astype(np.uint8))
        mask_pil = Image.fromarray(np.round((1 - mask_image) * 255.).astype(np.uint8))
        if self.current_model == self.default_model:
            return self.rgb_model(
                prompt=prompt,
                negative_prompt=negative_prompt,
                generator=generator,
                num_inference_steps=num_inference_steps,
                image=image_pil,
                mask_image=mask_pil,
            ).images[0]

        kwargs = {
            'negative_prompt': negative_prompt,
            'generator': generator,
            'strength': 0.9,
            'num_inference_steps': num_inference_steps,
            'height': self.cam.H,
            'width': self.cam.W,
        }

        image_np = np.round(np.clip(image, 0, 1) * 255.).astype(np.uint8)
        mask_sum = np.clip((image.prod(axis=-1) == 0) + (1 - mask_image), 0, 1)
        mask_padded = pad_mask(mask_sum, 3)
        masked = image_np * np.logical_not(mask_padded[..., None])

        if self.lama is not None:
            lama_image = Image.fromarray(self.lama(masked, mask_padded).astype(np.uint8))
        else:
            lama_image = image

        mask_image = Image.fromarray(mask_padded.astype(np.uint8) * 255)
        control_image = self.make_controlnet_inpaint_condition(lama_image, mask_image)

        return self.rgb_model(
            prompt=prompt,
            image=lama_image,
            control_image=control_image,
            mask_image=mask_image,
            **kwargs,
        ).images[0]

    def d(self, im):
        return self.d_model.infer_pil(im)

    def make_controlnet_inpaint_condition(self, image, image_mask):
        image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
        image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

        assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
        image[image_mask > 0.5] = -1.0  # set as masked pixel
        image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
        image = torch.from_numpy(image)
        return image

    def run(self, rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, render_camerapath, model_name=None, example_name=None):
        if rgb_cond is None or txt_cond is None:
            return (None, None, None)
        gaussians = self.create(
            rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, model_name, example_name)
        if gaussians is None:
            return (None, None, None)
        gallery, depth = self.render_video(render_camerapath, example_name=example_name)
        return (gaussians, gallery, depth)

    def create(self, rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, model_name=None, example_name=None):
        if rgb_cond is None or txt_cond is None:
            return None
        if self.for_gradio:
            self.cleaner()
            self.load_model(model_name)
        if example_name and example_name != 'DON\'T':
            outfile = os.path.join('examples', f'{example_name}.ply')
            if not os.path.exists(outfile):
                self.traindata = self.generate_pcd(rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps)
                self.scene = Scene(self.traindata, self.gaussians, self.opt)        
                self.training()
            outfile = self.save_ply(outfile)
        else:
            self.traindata = self.generate_pcd(rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps)
            self.scene = Scene(self.traindata, self.gaussians, self.opt)        
            self.training()
            self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
            outfile = self.save_ply(os.path.join(self.save_dir, 'gsplat.ply'))
        return outfile
    
    def save_ply(self, fpath=None):
        if fpath is None:
            dpath = os.path.join(self.root, self.timestamp)
            fpath = os.path.join(dpath, 'gsplat.ply')
            os.makedirs(dpath, exist_ok=True)
        if not os.path.exists(fpath):
            self.gaussians.save_ply(fpath)
        else:
            self.gaussians.load_ply(fpath)
        return fpath

    def cleaner(self):
        # Remove the temporary file created yesterday.
        for dpath in glob.glob(os.path.join('/tmp/gradio', '*',  self.root, '*')):
            timestamp = datetime.datetime.strptime(os.path.basename(dpath), '%y%m%d_%H%M%S')
            if timestamp < datetime.datetime.now() - datetime.timedelta(days=1):
                try:
                    shutil.rmtree(dpath)
                except OSError as e:
                    print("Error: %s - %s." % (e.filename, e.strerror))

    def render_video(self, preset, example_name=None, progress=gr.Progress()):
        if example_name and example_name != 'DON\'T':
            videopath = os.path.join('examples', f'{example_name}_{preset}.mp4')
            depthpath = os.path.join('examples', f'depth_{example_name}_{preset}.mp4')
        else:
            if self.for_gradio:
                videopath = os.path.join(self.root, self.timestamp, f'{preset}.mp4')
                depthpath = os.path.join(self.root, self.timestamp, f'depth_{preset}.mp4')
            else:
                videopath = os.path.join(self.save_dir, f'{preset}.mp4')
                depthpath = os.path.join(self.save_dir, f'depth_{preset}.mp4')
        if os.path.exists(videopath) and os.path.exists(depthpath):
            return videopath, depthpath
        
        if not hasattr(self, 'scene'):
            views = load_json(os.path.join('cameras', f'{preset}.json'), self.cam.H, self.cam.W)
        else:
            views = self.scene.getPresetCameras(preset)
        
        framelist = []
        depthlist = []
        dmin, dmax = 1e8, -1e8

        if self.for_gradio:
            iterable_render = progress.tqdm(views, desc='[4/4] Rendering a video')
        else:
            iterable_render = views

        for view in iterable_render:
            results = render(view, self.gaussians, self.opt, self.background)
            frame, depth = results['render'], results['depth']
            framelist.append(
                np.round(frame.permute(1,2,0).detach().cpu().numpy().clip(0,1)*255.).astype(np.uint8))
            depth = -(depth * (depth > 0)).detach().cpu().numpy()
            dmin_local = depth.min().item()
            dmax_local = depth.max().item()
            if dmin_local < dmin:
                dmin = dmin_local
            if dmax_local > dmax:
                dmax = dmax_local
            depthlist.append(depth)

        progress(1, desc='[4/4] Rendering a video...')

        # depthlist = [colorize(depth, vmin=dmin, vmax=dmax) for depth in depthlist]
        depthlist = [colorize(depth) for depth in depthlist]
        if not os.path.exists(videopath):
            imageio.mimwrite(videopath, framelist, fps=60, quality=8)
        if not os.path.exists(depthpath):
            imageio.mimwrite(depthpath, depthlist, fps=60, quality=8)
        return videopath, depthpath

    def training(self, progress=gr.Progress()):
        if not self.scene:
            raise('Build 3D Scene First!')
        
        if self.for_gradio:
            iterable_gauss = progress.tqdm(range(1, self.opt.iterations + 1), desc='[3/4] Baking Gaussians')
        else:
            iterable_gauss = range(1, self.opt.iterations + 1)

        for iteration in iterable_gauss:
            self.gaussians.update_learning_rate(iteration)

            # Every 1000 its we increase the levels of SH up to a maximum degree
            if iteration % 1000 == 0:
                self.gaussians.oneupSHdegree()

            # Pick a random Camera
            viewpoint_stack = self.scene.getTrainCameras().copy()
            viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))

            # import pdb; pdb.set_trace()
            # Render
            render_pkg = render(viewpoint_cam, self.gaussians, self.opt, self.background)
            image, viewspace_point_tensor, visibility_filter, radii = (
                render_pkg['render'], render_pkg['viewspace_points'], render_pkg['visibility_filter'], render_pkg['radii'])

            # Loss
            gt_image = viewpoint_cam.original_image.cuda()
            Ll1 = l1_loss(image, gt_image)
            loss = (1.0 - self.opt.lambda_dssim) * Ll1 + self.opt.lambda_dssim * (1.0 - ssim(image, gt_image))
            loss.backward()

            with torch.no_grad():
                # Densification
                if iteration < self.opt.densify_until_iter:
                    # Keep track of max radii in image-space for pruning
                    self.gaussians.max_radii2D[visibility_filter] = torch.max(
                        self.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                    self.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)

                    if iteration > self.opt.densify_from_iter and iteration % self.opt.densification_interval == 0:
                        size_threshold = 20 if iteration > self.opt.opacity_reset_interval else None
                        self.gaussians.densify_and_prune(
                            self.opt.densify_grad_threshold, 0.005, self.scene.cameras_extent, size_threshold)
                    
                    if (iteration % self.opt.opacity_reset_interval == 0 
                        or (self.opt.white_background and iteration == self.opt.densify_from_iter)
                    ):
                        self.gaussians.reset_opacity()

                # Optimizer step
                if iteration < self.opt.iterations:
                    self.gaussians.optimizer.step()
                    self.gaussians.optimizer.zero_grad(set_to_none = True)

    def generate_pcd(self, rgb_cond, prompt, negative_prompt, pcdgenpath, seed, diff_steps, progress=gr.Progress()):
        ## processing inputs
        generator=torch.Generator(device='cuda').manual_seed(seed)

        w_in, h_in = rgb_cond.size
        if w_in/h_in > 1.1 or h_in/w_in > 1.1: # if height and width are similar, do center crop
            in_res = max(w_in, h_in)
            image_in, mask_in = np.zeros((in_res, in_res, 3), dtype=np.uint8), 255*np.ones((in_res, in_res, 3), dtype=np.uint8)
            image_in[int(in_res/2-h_in/2):int(in_res/2+h_in/2), int(in_res/2-w_in/2):int(in_res/2+w_in/2)] = np.array(rgb_cond)
            mask_in[int(in_res/2-h_in/2):int(in_res/2+h_in/2), int(in_res/2-w_in/2):int(in_res/2+w_in/2)] = 0

            image2 = np.array(Image.fromarray(image_in).resize((self.cam.W, self.cam.H))).astype(float) / 255.0
            mask2 = np.array(Image.fromarray(mask_in).resize((self.cam.W, self.cam.H))).astype(float) / 255.0
            image_curr = self.rgb(
                prompt=prompt,
                image=image2,
                negative_prompt=negative_prompt, generator=generator,
                mask_image=mask2,
            )

        else: # if there is a large gap between height and width, do inpainting
            if w_in > h_in:
                image_curr = rgb_cond.crop((int(w_in/2-h_in/2), 0, int(w_in/2+h_in/2), h_in)).resize((self.cam.W, self.cam.H))
            else: # w <= h
                image_curr = rgb_cond.crop((0, int(h_in/2-w_in/2), w_in, int(h_in/2+w_in/2))).resize((self.cam.W, self.cam.H))

        render_poses = get_pcdGenPoses(pcdgenpath)
        depth_curr = self.d(image_curr)
        center_depth = np.mean(depth_curr[h_in//2-10:h_in//2+10, w_in//2-10:w_in//2+10])

        ###########################################################################################################################
        # Iterative scene generation
        H, W, K = self.cam.H, self.cam.W, self.cam.K

        x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # pixels
        edgeN = 2
        edgemask = np.ones((H-2*edgeN, W-2*edgeN))
        edgemask = np.pad(edgemask, ((edgeN,edgeN),(edgeN,edgeN)))

        ### initialize 
        R0, T0 = render_poses[0,:3,:3], render_poses[0,:3,3:4]
        pts_coord_cam = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))
        new_pts_coord_world2 = (np.linalg.inv(R0).dot(pts_coord_cam) - np.linalg.inv(R0).dot(T0)).astype(np.float32) ## new_pts_coord_world2
        new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.) ## new_pts_colors2

        pts_coord_world, pts_colors = new_pts_coord_world2.copy(), new_pts_colors2.copy()

        if self.for_gradio:
            progress(0, desc='[1/4] Dreaming...')
            iterable_dream = progress.tqdm(range(1, len(render_poses)), desc='[1/4] Dreaming')
        else:
            iterable_dream = range(1, len(render_poses))

        for i in iterable_dream:
            R, T = render_poses[i,:3,:3], render_poses[i,:3,3:4]

            ### Transform world to pixel
            pts_coord_cam2 = R.dot(pts_coord_world) + T  ### Same with c2w*world_coord (in homogeneous space)
            pixel_coord_cam2 = np.matmul(K, pts_coord_cam2)   #.reshape(3,H,W).transpose(1,2,0).astype(np.float32)

            valid_idx = np.where(np.logical_and.reduce((pixel_coord_cam2[2]>0, 
                                                        pixel_coord_cam2[0]/pixel_coord_cam2[2]>=0, 
                                                        pixel_coord_cam2[0]/pixel_coord_cam2[2]<=W-1, 
                                                        pixel_coord_cam2[1]/pixel_coord_cam2[2]>=0, 
                                                        pixel_coord_cam2[1]/pixel_coord_cam2[2]<=H-1)))[0]
            pixel_coord_cam2 = pixel_coord_cam2[:2, valid_idx]/pixel_coord_cam2[-1:, valid_idx]
            round_coord_cam2 = np.round(pixel_coord_cam2).astype(np.int32)

            x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
            grid = np.stack((x,y), axis=-1).reshape(-1,2)
            image2 = interp_grid(pixel_coord_cam2.transpose(1,0), pts_colors[valid_idx], grid, method='linear', fill_value=0).reshape(H,W,3)
            image2 = edgemask[...,None]*image2 + (1-edgemask[...,None])*np.pad(image2[1:-1,1:-1], ((1,1),(1,1),(0,0)), mode='edge')

            round_mask2 = np.zeros((H,W), dtype=np.float32)
            round_mask2[round_coord_cam2[1], round_coord_cam2[0]] = 1

            round_mask2 = maximum_filter(round_mask2, size=(9,9), axes=(0,1))
            image2 = round_mask2[...,None]*image2 + (1-round_mask2[...,None])*(-1)

            mask2 = minimum_filter((image2.sum(-1)!=-3)*1, size=(11,11), axes=(0,1))
            image2 = mask2[...,None]*image2 + (1-mask2[...,None])*0

            mask_hf = np.abs(mask2[:H-1, :W-1] - mask2[1:, :W-1]) + np.abs(mask2[:H-1, :W-1] - mask2[:H-1, 1:])
            mask_hf = np.pad(mask_hf, ((0,1), (0,1)), 'edge')
            mask_hf = np.where(mask_hf < 0.3, 0, 1)
            border_valid_idx = np.where(mask_hf[round_coord_cam2[1], round_coord_cam2[0]] == 1)[0]  # use valid_idx[border_valid_idx] for world1

            image_curr = self.rgb(
                prompt=prompt, image=image2, #Image.fromarray(np.round(image2*255.).astype(np.uint8)),
                negative_prompt=negative_prompt, generator=generator, num_inference_steps=diff_steps,
                mask_image=mask2, #Image.fromarray(np.round((1-mask2[:,:])*255.).astype(np.uint8))
            )
            depth_curr = self.d(image_curr)


            ### depth optimize
            t_z2 = torch.tensor(depth_curr)
            sc = torch.ones(1).float().requires_grad_(True)
            optimizer = torch.optim.Adam(params=[sc], lr=0.001)

            for idx in range(100):
                trans3d = torch.tensor([[sc,0,0,0], [0,sc,0,0], [0,0,sc,0], [0,0,0,1]]).requires_grad_(True)
                coord_cam2 = torch.matmul(torch.tensor(np.linalg.inv(K)), torch.stack((torch.tensor(x)*t_z2, torch.tensor(y)*t_z2, 1*t_z2), axis=0)[:,round_coord_cam2[1], round_coord_cam2[0]].reshape(3,-1))
                coord_world2 = (torch.tensor(np.linalg.inv(R)).float().matmul(coord_cam2) - torch.tensor(np.linalg.inv(R)).float().matmul(torch.tensor(T).float()))
                coord_world2_warp = torch.cat((coord_world2, torch.ones((1,valid_idx.shape[0]))), dim=0)
                coord_world2_trans = torch.matmul(trans3d, coord_world2_warp)
                coord_world2_trans = coord_world2_trans[:3] / coord_world2_trans[-1]
                loss = torch.mean((torch.tensor(pts_coord_world[:,valid_idx]).float() - coord_world2_trans)**2)

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()    

            with torch.no_grad():
                coord_cam2 = torch.matmul(torch.tensor(np.linalg.inv(K)), torch.stack((torch.tensor(x)*t_z2, torch.tensor(y)*t_z2, 1*t_z2), axis=0)[:,round_coord_cam2[1, border_valid_idx], round_coord_cam2[0, border_valid_idx]].reshape(3,-1))
                coord_world2 = (torch.tensor(np.linalg.inv(R)).float().matmul(coord_cam2) - torch.tensor(np.linalg.inv(R)).float().matmul(torch.tensor(T).float()))
                coord_world2_warp = torch.cat((coord_world2, torch.ones((1, border_valid_idx.shape[0]))), dim=0)
                coord_world2_trans = torch.matmul(trans3d, coord_world2_warp)
                coord_world2_trans = coord_world2_trans[:3] / coord_world2_trans[-1]

            trans3d = trans3d.detach().numpy()

            pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))[:,np.where(1-mask2.reshape(-1))[0]]
            camera_origin_coord_world2 = - np.linalg.inv(R).dot(T).astype(np.float32) # 3, 1
            new_pts_coord_world2 = (np.linalg.inv(R).dot(pts_coord_cam2) - np.linalg.inv(R).dot(T)).astype(np.float32)
            new_pts_coord_world2_warp = np.concatenate((new_pts_coord_world2, np.ones((1, new_pts_coord_world2.shape[1]))), axis=0)
            new_pts_coord_world2 = np.matmul(trans3d, new_pts_coord_world2_warp)
            new_pts_coord_world2 = new_pts_coord_world2[:3] / new_pts_coord_world2[-1]
            new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.)[np.where(1-mask2.reshape(-1))[0]]

            vector_camorigin_to_campixels = coord_world2_trans.detach().numpy() - camera_origin_coord_world2
            vector_camorigin_to_pcdpixels = pts_coord_world[:,valid_idx[border_valid_idx]] - camera_origin_coord_world2

            compensate_depth_coeff = np.sum(vector_camorigin_to_pcdpixels * vector_camorigin_to_campixels, axis=0) / np.sum(vector_camorigin_to_campixels * vector_camorigin_to_campixels, axis=0) # N_correspond
            compensate_pts_coord_world2_correspond = camera_origin_coord_world2 + vector_camorigin_to_campixels * compensate_depth_coeff.reshape(1,-1)

            compensate_coord_cam2_correspond = R.dot(compensate_pts_coord_world2_correspond) + T
            homography_coord_cam2_correspond = R.dot(coord_world2_trans.detach().numpy()) + T

            compensate_depth_correspond = compensate_coord_cam2_correspond[-1] - homography_coord_cam2_correspond[-1] # N_correspond
            compensate_depth_zero = np.zeros(4)
            compensate_depth = np.concatenate((compensate_depth_correspond, compensate_depth_zero), axis=0)  # N_correspond+4

            pixel_cam2_correspond = pixel_coord_cam2[:, border_valid_idx] # 2, N_correspond (xy)
            pixel_cam2_zero = np.array([[0,0,W-1,W-1],[0,H-1,0,H-1]])
            pixel_cam2 = np.concatenate((pixel_cam2_correspond, pixel_cam2_zero), axis=1).transpose(1,0) # N+H, 2

            # Calculate for masked pixels
            masked_pixels_xy = np.stack(np.where(1-mask2), axis=1)[:, [1,0]]
            new_depth_linear, new_depth_nearest = interp_grid(pixel_cam2, compensate_depth, masked_pixels_xy), interp_grid(pixel_cam2, compensate_depth, masked_pixels_xy, method='nearest')
            new_depth = np.where(np.isnan(new_depth_linear), new_depth_nearest, new_depth_linear)

            pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))[:,np.where(1-mask2.reshape(-1))[0]]
            x_nonmask, y_nonmask = x.reshape(-1)[np.where(1-mask2.reshape(-1))[0]], y.reshape(-1)[np.where(1-mask2.reshape(-1))[0]]
            compensate_pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x_nonmask*new_depth, y_nonmask*new_depth, 1*new_depth), axis=0))
            new_warp_pts_coord_cam2 = pts_coord_cam2 + compensate_pts_coord_cam2

            new_pts_coord_world2 = (np.linalg.inv(R).dot(new_warp_pts_coord_cam2) - np.linalg.inv(R).dot(T)).astype(np.float32)
            new_pts_coord_world2_warp = np.concatenate((new_pts_coord_world2, np.ones((1, new_pts_coord_world2.shape[1]))), axis=0)
            new_pts_coord_world2 = np.matmul(trans3d, new_pts_coord_world2_warp)
            new_pts_coord_world2 = new_pts_coord_world2[:3] / new_pts_coord_world2[-1]
            new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.)[np.where(1-mask2.reshape(-1))[0]]

            pts_coord_world = np.concatenate((pts_coord_world, new_pts_coord_world2), axis=-1) ### Same with inv(c2w) * cam_coord (in homogeneous space)
            pts_colors = np.concatenate((pts_colors, new_pts_colors2), axis=0)

        #################################################################################################

        yz_reverse = np.array([[1,0,0], [0,-1,0], [0,0,-1]])
        traindata = {
            'camera_angle_x': self.cam.fov[0],
            'W': W,
            'H': H,
            'pcd_points': pts_coord_world,
            'pcd_colors': pts_colors,
            'frames': [],
        }

        # render_poses = get_pcdGenPoses(pcdgenpath)
        internel_render_poses = get_pcdGenPoses('hemisphere', {'center_depth': center_depth})

        if self.for_gradio:
            progress(0, desc='[2/4] Aligning...')
            iterable_align = progress.tqdm(range(len(render_poses)), desc='[2/4] Aligning')
        else:
            iterable_align = range(len(render_poses))

        for i in iterable_align:
            for j in range(len(internel_render_poses)):
                idx = i * len(internel_render_poses) + j
                print(f'{idx+1} / {len(render_poses)*len(internel_render_poses)}')

                ### Transform world to pixel
                Rw2i = render_poses[i,:3,:3]
                Tw2i = render_poses[i,:3,3:4]
                Ri2j = internel_render_poses[j,:3,:3]
                Ti2j = internel_render_poses[j,:3,3:4]

                Rw2j = np.matmul(Ri2j, Rw2i)
                Tw2j = np.matmul(Ri2j, Tw2i) + Ti2j

                # Transfrom cam2 to world + change sign of yz axis
                Rj2w = np.matmul(yz_reverse, Rw2j).T
                Tj2w = -np.matmul(Rj2w, np.matmul(yz_reverse, Tw2j))
                Pc2w = np.concatenate((Rj2w, Tj2w), axis=1)
                Pc2w = np.concatenate((Pc2w, np.array([[0,0,0,1]])), axis=0)

                pts_coord_camj = Rw2j.dot(pts_coord_world) + Tw2j
                pixel_coord_camj = np.matmul(K, pts_coord_camj)

                valid_idxj = np.where(np.logical_and.reduce((pixel_coord_camj[2]>0, 
                                                            pixel_coord_camj[0]/pixel_coord_camj[2]>=0, 
                                                            pixel_coord_camj[0]/pixel_coord_camj[2]<=W-1, 
                                                            pixel_coord_camj[1]/pixel_coord_camj[2]>=0, 
                                                            pixel_coord_camj[1]/pixel_coord_camj[2]<=H-1)))[0]
                if len(valid_idxj) == 0:
                    continue
                pts_depthsj = pixel_coord_camj[-1:, valid_idxj]
                pixel_coord_camj = pixel_coord_camj[:2, valid_idxj]/pixel_coord_camj[-1:, valid_idxj]
                round_coord_camj = np.round(pixel_coord_camj).astype(np.int32)


                x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # pixels
                grid = np.stack((x,y), axis=-1).reshape(-1,2)
                imagej = interp_grid(pixel_coord_camj.transpose(1,0), pts_colors[valid_idxj], grid, method='linear', fill_value=0).reshape(H,W,3)
                imagej = edgemask[...,None]*imagej + (1-edgemask[...,None])*np.pad(imagej[1:-1,1:-1], ((1,1),(1,1),(0,0)), mode='edge')

                depthj = interp_grid(pixel_coord_camj.transpose(1,0), pts_depthsj.T, grid, method='linear', fill_value=0).reshape(H,W)
                depthj = edgemask*depthj + (1-edgemask)*np.pad(depthj[1:-1,1:-1], ((1,1),(1,1)), mode='edge')

                maskj = np.zeros((H,W), dtype=np.float32)
                maskj[round_coord_camj[1], round_coord_camj[0]] = 1
                maskj = maximum_filter(maskj, size=(9,9), axes=(0,1))
                imagej = maskj[...,None]*imagej + (1-maskj[...,None])*(-1)

                maskj = minimum_filter((imagej.sum(-1)!=-3)*1, size=(11,11), axes=(0,1))
                imagej = maskj[...,None]*imagej + (1-maskj[...,None])*0

                traindata['frames'].append({
                    'image': Image.fromarray(np.round(imagej*255.).astype(np.uint8)), 
                    'transform_matrix': Pc2w.tolist(),
                })

        progress(1, desc='[3/4] Baking Gaussians...')
        return traindata