File size: 5,499 Bytes
186c7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
 * Copyright (C) 2023, Inria
 * GRAPHDECO research group, https://team.inria.fr/graphdeco
 * All rights reserved.
 *
 * This software is free for non-commercial, research and evaluation use 
 * under the terms of the LICENSE.md file.
 *
 * For inquiries contact  george.drettakis@inria.fr
 */

#ifndef CUDA_RASTERIZER_AUXILIARY_H_INCLUDED
#define CUDA_RASTERIZER_AUXILIARY_H_INCLUDED

#include "config.h"
#include "stdio.h"

#define BLOCK_SIZE (BLOCK_X * BLOCK_Y)
#define NUM_WARPS (BLOCK_SIZE/32)

// Spherical harmonics coefficients
__device__ const float SH_C0 = 0.28209479177387814f;
__device__ const float SH_C1 = 0.4886025119029199f;
__device__ const float SH_C2[] = {
	1.0925484305920792f,
	-1.0925484305920792f,
	0.31539156525252005f,
	-1.0925484305920792f,
	0.5462742152960396f
};
__device__ const float SH_C3[] = {
	-0.5900435899266435f,
	2.890611442640554f,
	-0.4570457994644658f,
	0.3731763325901154f,
	-0.4570457994644658f,
	1.445305721320277f,
	-0.5900435899266435f
};

__forceinline__ __device__ float ndc2Pix(float v, int S)
{
	return ((v + 1.0) * S - 1.0) * 0.5;
}

__forceinline__ __device__ void getRect(const float2 p, int max_radius, uint2& rect_min, uint2& rect_max, dim3 grid)
{
	rect_min = {
		min(grid.x, max((int)0, (int)((p.x - max_radius) / BLOCK_X))),
		min(grid.y, max((int)0, (int)((p.y - max_radius) / BLOCK_Y)))
	};
	rect_max = {
		min(grid.x, max((int)0, (int)((p.x + max_radius + BLOCK_X - 1) / BLOCK_X))),
		min(grid.y, max((int)0, (int)((p.y + max_radius + BLOCK_Y - 1) / BLOCK_Y)))
	};
}

__forceinline__ __device__ float3 transformPoint4x3(const float3& p, const float* matrix)
{
	float3 transformed = {
		matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
		matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
		matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
	};
	return transformed;
}

__forceinline__ __device__ float4 transformPoint4x4(const float3& p, const float* matrix)
{
	float4 transformed = {
		matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
		matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
		matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
		matrix[3] * p.x + matrix[7] * p.y + matrix[11] * p.z + matrix[15]
	};
	return transformed;
}

__forceinline__ __device__ float3 transformVec4x3(const float3& p, const float* matrix)
{
	float3 transformed = {
		matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z,
		matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z,
		matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z,
	};
	return transformed;
}

__forceinline__ __device__ float3 transformVec4x3Transpose(const float3& p, const float* matrix)
{
	float3 transformed = {
		matrix[0] * p.x + matrix[1] * p.y + matrix[2] * p.z,
		matrix[4] * p.x + matrix[5] * p.y + matrix[6] * p.z,
		matrix[8] * p.x + matrix[9] * p.y + matrix[10] * p.z,
	};
	return transformed;
}

__forceinline__ __device__ float dnormvdz(float3 v, float3 dv)
{
	float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
	float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
	float dnormvdz = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
	return dnormvdz;
}

__forceinline__ __device__ float3 dnormvdv(float3 v, float3 dv)
{
	float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
	float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);

	float3 dnormvdv;
	dnormvdv.x = ((+sum2 - v.x * v.x) * dv.x - v.y * v.x * dv.y - v.z * v.x * dv.z) * invsum32;
	dnormvdv.y = (-v.x * v.y * dv.x + (sum2 - v.y * v.y) * dv.y - v.z * v.y * dv.z) * invsum32;
	dnormvdv.z = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
	return dnormvdv;
}

__forceinline__ __device__ float4 dnormvdv(float4 v, float4 dv)
{
	float sum2 = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
	float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);

	float4 vdv = { v.x * dv.x, v.y * dv.y, v.z * dv.z, v.w * dv.w };
	float vdv_sum = vdv.x + vdv.y + vdv.z + vdv.w;
	float4 dnormvdv;
	dnormvdv.x = ((sum2 - v.x * v.x) * dv.x - v.x * (vdv_sum - vdv.x)) * invsum32;
	dnormvdv.y = ((sum2 - v.y * v.y) * dv.y - v.y * (vdv_sum - vdv.y)) * invsum32;
	dnormvdv.z = ((sum2 - v.z * v.z) * dv.z - v.z * (vdv_sum - vdv.z)) * invsum32;
	dnormvdv.w = ((sum2 - v.w * v.w) * dv.w - v.w * (vdv_sum - vdv.w)) * invsum32;
	return dnormvdv;
}

__forceinline__ __device__ float sigmoid(float x)
{
	return 1.0f / (1.0f + expf(-x));
}

__forceinline__ __device__ bool in_frustum(int idx,
	const float* orig_points,
	const float* viewmatrix,
	const float* projmatrix,
	bool prefiltered,
	float3& p_view)
{
	float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] };

	// Bring points to screen space
	float4 p_hom = transformPoint4x4(p_orig, projmatrix);
	float p_w = 1.0f / (p_hom.w + 0.0000001f);
	float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w };
	p_view = transformPoint4x3(p_orig, viewmatrix);

	if (p_view.z <= 0.2f)// || ((p_proj.x < -1.3 || p_proj.x > 1.3 || p_proj.y < -1.3 || p_proj.y > 1.3)))
	{
		if (prefiltered)
		{
			printf("Point is filtered although prefiltered is set. This shouldn't happen!");
			__trap();
		}
		return false;
	}
	return true;
}

#define CHECK_CUDA(A, debug) \
A; if(debug) { \
auto ret = cudaDeviceSynchronize(); \
if (ret != cudaSuccess) { \
std::cerr << "\n[CUDA ERROR] in " << __FILE__ << "\nLine " << __LINE__ << ": " << cudaGetErrorString(ret); \
throw std::runtime_error(cudaGetErrorString(ret)); \
} \
}

#endif