File size: 14,296 Bytes
186c7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
 * Copyright (C) 2023, Inria
 * GRAPHDECO research group, https://team.inria.fr/graphdeco
 * All rights reserved.
 *
 * This software is free for non-commercial, research and evaluation use 
 * under the terms of the LICENSE.md file.
 *
 * For inquiries contact  george.drettakis@inria.fr
 */

#include "forward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;

// Forward method for converting the input spherical harmonics
// coefficients of each Gaussian to a simple RGB color.
__device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, bool* clamped)
{
	// The implementation is loosely based on code for 
	// "Differentiable Point-Based Radiance Fields for 
	// Efficient View Synthesis" by Zhang et al. (2022)
	glm::vec3 pos = means[idx];
	glm::vec3 dir = pos - campos;
	dir = dir / glm::length(dir);

	glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
	glm::vec3 result = SH_C0 * sh[0];

	if (deg > 0)
	{
		float x = dir.x;
		float y = dir.y;
		float z = dir.z;
		result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3];

		if (deg > 1)
		{
			float xx = x * x, yy = y * y, zz = z * z;
			float xy = x * y, yz = y * z, xz = x * z;
			result = result +
				SH_C2[0] * xy * sh[4] +
				SH_C2[1] * yz * sh[5] +
				SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] +
				SH_C2[3] * xz * sh[7] +
				SH_C2[4] * (xx - yy) * sh[8];

			if (deg > 2)
			{
				result = result +
					SH_C3[0] * y * (3.0f * xx - yy) * sh[9] +
					SH_C3[1] * xy * z * sh[10] +
					SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] +
					SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] +
					SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] +
					SH_C3[5] * z * (xx - yy) * sh[14] +
					SH_C3[6] * x * (xx - 3.0f * yy) * sh[15];
			}
		}
	}
	result += 0.5f;

	// RGB colors are clamped to positive values. If values are
	// clamped, we need to keep track of this for the backward pass.
	clamped[3 * idx + 0] = (result.x < 0);
	clamped[3 * idx + 1] = (result.y < 0);
	clamped[3 * idx + 2] = (result.z < 0);
	return glm::max(result, 0.0f);
}

// Forward version of 2D covariance matrix computation
__device__ float3 computeCov2D(const float3& mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float* cov3D, const float* viewmatrix)
{
	// The following models the steps outlined by equations 29
	// and 31 in "EWA Splatting" (Zwicker et al., 2002). 
	// Additionally considers aspect / scaling of viewport.
	// Transposes used to account for row-/column-major conventions.
	float3 t = transformPoint4x3(mean, viewmatrix);

	const float limx = 1.3f * tan_fovx;
	const float limy = 1.3f * tan_fovy;
	const float txtz = t.x / t.z;
	const float tytz = t.y / t.z;
	t.x = min(limx, max(-limx, txtz)) * t.z;
	t.y = min(limy, max(-limy, tytz)) * t.z;

	glm::mat3 J = glm::mat3(
		focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z),
		0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z),
		0, 0, 0);

	glm::mat3 W = glm::mat3(
		viewmatrix[0], viewmatrix[4], viewmatrix[8],
		viewmatrix[1], viewmatrix[5], viewmatrix[9],
		viewmatrix[2], viewmatrix[6], viewmatrix[10]);

	glm::mat3 T = W * J;

	glm::mat3 Vrk = glm::mat3(
		cov3D[0], cov3D[1], cov3D[2],
		cov3D[1], cov3D[3], cov3D[4],
		cov3D[2], cov3D[4], cov3D[5]);

	glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T;

	// Apply low-pass filter: every Gaussian should be at least
	// one pixel wide/high. Discard 3rd row and column.
	cov[0][0] += 0.3f;
	cov[1][1] += 0.3f;
	return { float(cov[0][0]), float(cov[0][1]), float(cov[1][1]) };
}

// Forward method for converting scale and rotation properties of each
// Gaussian to a 3D covariance matrix in world space. Also takes care
// of quaternion normalization.
__device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float* cov3D)
{
	// Create scaling matrix
	glm::mat3 S = glm::mat3(1.0f);
	S[0][0] = mod * scale.x;
	S[1][1] = mod * scale.y;
	S[2][2] = mod * scale.z;

	// Normalize quaternion to get valid rotation
	glm::vec4 q = rot;// / glm::length(rot);
	float r = q.x;
	float x = q.y;
	float y = q.z;
	float z = q.w;

	// Compute rotation matrix from quaternion
	glm::mat3 R = glm::mat3(
		1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
		2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
		2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)
	);

	glm::mat3 M = S * R;

	// Compute 3D world covariance matrix Sigma
	glm::mat3 Sigma = glm::transpose(M) * M;

	// Covariance is symmetric, only store upper right
	cov3D[0] = Sigma[0][0];
	cov3D[1] = Sigma[0][1];
	cov3D[2] = Sigma[0][2];
	cov3D[3] = Sigma[1][1];
	cov3D[4] = Sigma[1][2];
	cov3D[5] = Sigma[2][2];
}

// Perform initial steps for each Gaussian prior to rasterization.
template<int C>
__global__ void preprocessCUDA(int P, int D, int M,
	const float* orig_points,
	const glm::vec3* scales,
	const float scale_modifier,
	const glm::vec4* rotations,
	const float* opacities,
	const float* shs,
	bool* clamped,
	const float* cov3D_precomp,
	const float* colors_precomp,
	const float* viewmatrix,
	const float* projmatrix,
	const glm::vec3* cam_pos,
	const int W, int H,
	const float tan_fovx, float tan_fovy,
	const float focal_x, float focal_y,
	int* radii,
	float2* points_xy_image,
	float* depths,
	float* cov3Ds,
	float* rgb,
	float4* conic_opacity,
	const dim3 grid,
	uint32_t* tiles_touched,
	bool prefiltered)
{
	auto idx = cg::this_grid().thread_rank();
	if (idx >= P)
		return;

	// Initialize radius and touched tiles to 0. If this isn't changed,
	// this Gaussian will not be processed further.
	radii[idx] = 0;
	tiles_touched[idx] = 0;

	// Perform near culling, quit if outside.
	float3 p_view;
	if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view))
		return;

	// Transform point by projecting
	float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] };
	float4 p_hom = transformPoint4x4(p_orig, projmatrix);
	float p_w = 1.0f / (p_hom.w + 0.0000001f);
	float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w };

	// If 3D covariance matrix is precomputed, use it, otherwise compute
	// from scaling and rotation parameters. 
	const float* cov3D;
	if (cov3D_precomp != nullptr)
	{
		cov3D = cov3D_precomp + idx * 6;
	}
	else
	{
		computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6);
		cov3D = cov3Ds + idx * 6;
	}

	// Compute 2D screen-space covariance matrix
	float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix);

	// Invert covariance (EWA algorithm)
	float det = (cov.x * cov.z - cov.y * cov.y);
	if (det == 0.0f)
		return;
	float det_inv = 1.f / det;
	float3 conic = { cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv };

	// Compute extent in screen space (by finding eigenvalues of
	// 2D covariance matrix). Use extent to compute a bounding rectangle
	// of screen-space tiles that this Gaussian overlaps with. Quit if
	// rectangle covers 0 tiles. 
	float mid = 0.5f * (cov.x + cov.z);
	float lambda1 = mid + sqrt(max(0.1f, mid * mid - det));
	float lambda2 = mid - sqrt(max(0.1f, mid * mid - det));
	float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2)));
	float2 point_image = { ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H) };
	uint2 rect_min, rect_max;
	getRect(point_image, my_radius, rect_min, rect_max, grid);
	if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0)
		return;

	// If colors have been precomputed, use them, otherwise convert
	// spherical harmonics coefficients to RGB color.
	if (colors_precomp == nullptr)
	{
		glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3*)orig_points, *cam_pos, shs, clamped);
		rgb[idx * C + 0] = result.x;
		rgb[idx * C + 1] = result.y;
		rgb[idx * C + 2] = result.z;
	}

	// Store some useful helper data for the next steps.
	depths[idx] = p_view.z;
	radii[idx] = my_radius;
	points_xy_image[idx] = point_image;
	// Inverse 2D covariance and opacity neatly pack into one float4
	conic_opacity[idx] = { conic.x, conic.y, conic.z, opacities[idx] };
	tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x);
}

// Main rasterization method. Collaboratively works on one tile per
// block, each thread treats one pixel. Alternates between fetching 
// and rasterizing data.
template <uint32_t CHANNELS>
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
renderCUDA(
	const uint2* __restrict__ ranges,
	const uint32_t* __restrict__ point_list,
	int W, int H,
	const float2* __restrict__ points_xy_image,
	const float* __restrict__ features,
	const float* __restrict__ depths,
	const float4* __restrict__ conic_opacity,
	float* __restrict__ final_T,
	uint32_t* __restrict__ n_contrib,
	const float* __restrict__ bg_color,
	float* __restrict__ out_color,
	float* __restrict__ out_depth)
{
	// Identify current tile and associated min/max pixel range.
	auto block = cg::this_thread_block();
	uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
	uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
	uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
	uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
	uint32_t pix_id = W * pix.y + pix.x;
	float2 pixf = { (float)pix.x, (float)pix.y };

	// Check if this thread is associated with a valid pixel or outside.
	bool inside = pix.x < W&& pix.y < H;
	// Done threads can help with fetching, but don't rasterize
	bool done = !inside;

	// Load start/end range of IDs to process in bit sorted list.
	uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
	const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
	int toDo = range.y - range.x;

	// Allocate storage for batches of collectively fetched data.
	__shared__ int collected_id[BLOCK_SIZE];
	__shared__ float2 collected_xy[BLOCK_SIZE];
	__shared__ float4 collected_conic_opacity[BLOCK_SIZE];

	// Initialize helper variables
	float T = 1.0f;
	uint32_t contributor = 0;
	uint32_t last_contributor = 0;
	float C[CHANNELS] = { 0 };
	float D = { 0 };
	float acc = { 0.000001f };

	// Iterate over batches until all done or range is complete
	for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
	{
		// End if entire block votes that it is done rasterizing
		int num_done = __syncthreads_count(done);
		if (num_done == BLOCK_SIZE)
			break;

		// Collectively fetch per-Gaussian data from global to shared
		int progress = i * BLOCK_SIZE + block.thread_rank();
		if (range.x + progress < range.y)
		{
			int coll_id = point_list[range.x + progress];
			collected_id[block.thread_rank()] = coll_id;
			collected_xy[block.thread_rank()] = points_xy_image[coll_id];
			collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
		}
		block.sync();

		// Iterate over current batch
		for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
		{
			// Keep track of current position in range
			contributor++;

			// Resample using conic matrix (cf. "Surface 
			// Splatting" by Zwicker et al., 2001)
			float2 xy = collected_xy[j];
			float2 d = { xy.x - pixf.x, xy.y - pixf.y };
			float4 con_o = collected_conic_opacity[j];
			float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
			if (power > 0.0f)
				continue;

			// Eq. (2) from 3D Gaussian splatting paper.
			// Obtain alpha by multiplying with Gaussian opacity
			// and its exponential falloff from mean.
			// Avoid numerical instabilities (see paper appendix). 
			float alpha = min(0.99f, con_o.w * exp(power));
			if (alpha < 1.0f / 255.0f)
				continue;
			float test_T = T * (1 - alpha);
			if (test_T < 0.0001f)
			{
				done = true;
				continue;
			}

			// Eq. (3) from 3D Gaussian splatting paper.
			for (int ch = 0; ch < CHANNELS; ch++)
				C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T;

			// if (D < 0.0001f && alpha > 0.05f){
			// 	D = depths[collected_id[j]];
			// }
			D += depths[collected_id[j]] * alpha * T;
			acc += alpha * T;

			T = test_T;

			// Keep track of last range entry to update this
			// pixel.
			last_contributor = contributor;
		}
	}

	// All threads that treat valid pixel write out their final
	// rendering data to the frame and auxiliary buffers.
	if (inside)
	{
		final_T[pix_id] = T;
		n_contrib[pix_id] = last_contributor;
		for (int ch = 0; ch < CHANNELS; ch++)
			out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch];

		if (acc > 0.5f){
			out_depth[pix_id] = D/acc;
		}else{
			out_depth[pix_id] = 0;
		}
		// out_depth[pix_id] = D;
	}
}

void FORWARD::render(
	const dim3 grid, dim3 block,
	const uint2* ranges,
	const uint32_t* point_list,
	int W, int H,
	const float2* means2D,
	const float* colors,
	const float* depths,
	const float4* conic_opacity,
	float* final_T,
	uint32_t* n_contrib,
	const float* bg_color,
	float* out_color,
	float* out_depth)
{
	renderCUDA<NUM_CHANNELS> << <grid, block >> > (
		ranges,
		point_list,
		W, H,
		means2D,
		colors,
		depths,
		conic_opacity,
		final_T,
		n_contrib,
		bg_color,
		out_color,
		out_depth);
}

void FORWARD::preprocess(int P, int D, int M,
	const float* means3D,
	const glm::vec3* scales,
	const float scale_modifier,
	const glm::vec4* rotations,
	const float* opacities,
	const float* shs,
	bool* clamped,
	const float* cov3D_precomp,
	const float* colors_precomp,
	const float* viewmatrix,
	const float* projmatrix,
	const glm::vec3* cam_pos,
	const int W, int H,
	const float focal_x, float focal_y,
	const float tan_fovx, float tan_fovy,
	int* radii,
	float2* means2D,
	float* depths,
	float* cov3Ds,
	float* rgb,
	float4* conic_opacity,
	const dim3 grid,
	uint32_t* tiles_touched,
	bool prefiltered)
{
	preprocessCUDA<NUM_CHANNELS> << <(P + 255) / 256, 256 >> > (
		P, D, M,
		means3D,
		scales,
		scale_modifier,
		rotations,
		opacities,
		shs,
		clamped,
		cov3D_precomp,
		colors_precomp,
		viewmatrix, 
		projmatrix,
		cam_pos,
		W, H,
		tan_fovx, tan_fovy,
		focal_x, focal_y,
		radii,
		means2D,
		depths,
		cov3Ds,
		rgb,
		conic_opacity,
		grid,
		tiles_touched,
		prefiltered
		);
}