Spaces:
Runtime error
Runtime error
File size: 17,316 Bytes
24f9881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import sys
import json
from typing import NamedTuple
from pathlib import Path
import imageio
import torch
import numpy as np
from PIL import Image
from plyfile import PlyData, PlyElement
from scene.gaussian_model import BasicPointCloud
from scene.cameras import MiniCam, Camera
from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \
read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text
from utils.graphics import getWorld2View2, focal2fov, fov2focal
from utils.graphics import getProjectionMatrix
from utils.trajectory import get_camerapaths
from utils.sh import SH2RGB
class CameraInfo(NamedTuple):
uid: int
R: np.array
T: np.array
FovY: np.array
FovX: np.array
image: np.array
image_path: str
image_name: str
width: int
height: int
class SceneInfo(NamedTuple):
point_cloud: BasicPointCloud
train_cameras: list
test_cameras: list
preset_cameras: list
nerf_normalization: dict
ply_path: str
def getNerfppNorm(cam_info):
def get_center_and_diag(cam_centers):
cam_centers = np.hstack(cam_centers)
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
center = avg_cam_center
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
diagonal = np.max(dist)
return center.flatten(), diagonal
cam_centers = []
for cam in cam_info:
W2C = getWorld2View2(cam.R, cam.T)
C2W = np.linalg.inv(W2C)
cam_centers.append(C2W[:3, 3:4])
center, diagonal = get_center_and_diag(cam_centers)
radius = diagonal * 1.1
translate = -center
return {"translate": translate, "radius": radius}
def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
cam_infos = []
for idx, key in enumerate(cam_extrinsics):
sys.stdout.write('\r')
# the exact output you're looking for:
sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics)))
sys.stdout.flush()
extr = cam_extrinsics[key]
intr = cam_intrinsics[extr.camera_id]
height = intr.height
width = intr.width
uid = intr.id
R = np.transpose(qvec2rotmat(extr.qvec))
T = np.array(extr.tvec)
if intr.model=="SIMPLE_PINHOLE":
focal_length_x = intr.params[0]
FovY = focal2fov(focal_length_x, height)
FovX = focal2fov(focal_length_x, width)
elif intr.model=="PINHOLE":
focal_length_x = intr.params[0]
focal_length_y = intr.params[1]
FovY = focal2fov(focal_length_y, height)
FovX = focal2fov(focal_length_x, width)
else:
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
image = Image.open(image_path)
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
image_path=image_path, image_name=image_name, width=width, height=height)
cam_infos.append(cam_info)
sys.stdout.write('\n')
return cam_infos
def fetchPly(path):
plydata = PlyData.read(path)
vertices = plydata['vertex']
idx = np.random.choice(len(vertices['x']),size=(min(len(vertices['x']), 100_000),),replace=False)
positions = np.vstack([vertices['x'][idx], vertices['y'][idx], vertices['z'][idx]]).T if 'x' in vertices else None
colors = np.vstack([vertices['red'][idx], vertices['green'][idx], vertices['blue'][idx]]).T / 255.0 if 'red' in vertices else None
normals = np.vstack([vertices['nx'][idx], vertices['ny'][idx], vertices['nz'][idx]]).T if 'nx' in vertices else None
return BasicPointCloud(points=positions, colors=colors, normals=normals)
def storePly(path, xyz, rgb):
# Define the dtype for the structured array
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, 'vertex')
ply_data = PlyData([vertex_element])
ply_data.write(path)
def readColmapSceneInfo(path, images, eval, preset=None, llffhold=8):
try:
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
except:
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)
reading_dir = "images" if images == None else images
cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir))
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name)
if eval:
# train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
# test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % 5 == 2 or idx % 5 == 0]
test_cam_infos = [c for idx, c in enumerate(cam_infos) if not (idx % 5 == 2 or idx % 5 == 0)]
else:
train_cam_infos = cam_infos
test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "sparse/0/points3D.ply")
bin_path = os.path.join(path, "sparse/0/points3D.bin")
txt_path = os.path.join(path, "sparse/0/points3D.txt")
if not os.path.exists(ply_path):
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
try:
xyz, rgb, _ = read_points3D_binary(bin_path)
except:
xyz, rgb, _ = read_points3D_text(txt_path)
storePly(ply_path, xyz, rgb)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
if preset:
preset_cam_infos = readCamerasFromPreset('/home/chung/workspace/gaussian-splatting/poses_supplementary', f"{preset}.json")
else:
preset_cam_infos = None
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
preset_cameras=preset_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path)
return scene_info
def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
cam_infos = []
with open(os.path.join(path, transformsfile)) as json_file:
contents = json.load(json_file)
fovx = contents["camera_angle_x"]
frames = contents["frames"]
for idx, frame in enumerate(frames):
cam_name = os.path.join(path, frame["file_path"] + extension)
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
image_path = os.path.join(path, cam_name)
image_name = Path(cam_name).stem
image = Image.open(image_path)
# if os.path.exists(os.path.join(path, frame["file_path"].replace("/train/", "/depths_train/")+'.npy')):
# depth = np.load(os.path.join(path, frame["file_path"].replace("/train/", "/depths_train/")+'.npy'))
# if os.path.exists(os.path.join(path, frame["file_path"].replace("/train/", "/masks_train/")+'.png')):
# mask = imageio.v3.imread(os.path.join(path, frame["file_path"].replace("/train/", "/masks_train/")+'.png'))[:,:,0]/255.
# else:
# mask = np.ones_like(depth)
# final_depth = depth*mask
# else:
# final_depth = None
im_data = np.array(image.convert("RGBA"))
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
norm_data = im_data / 255.0
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
fovy = focal2fov(fov2focal(fovx, image.size[1]), image.size[0])
FovY = fovy
FovX = fovx
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
return cam_infos
def readCamerasFromPreset(path, transformsfile):
cam_infos = []
with open(os.path.join(path, transformsfile)) as json_file:
contents = json.load(json_file)
FOV = contents["camera_angle_x"]*1.2
frames = contents["frames"]
for idx, frame in enumerate(frames):
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(np.concatenate((c2w, np.array([0,0,0,1]).reshape(1,4)), axis=0))
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
# R = c2w[:3,:3]
# T = - np.transpose(R).dot(c2w[:3,3])
image = Image.fromarray(np.zeros((512,512)), "RGB")
FovY = focal2fov(fov2focal(FOV, 512), image.size[0])
FovX = focal2fov(fov2focal(FOV, 512), image.size[1])
# FovX, FovY = contents["camera_angle_x"], contents["camera_angle_x"]
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
image_path='None', image_name='None', width=image.size[1], height=image.size[0]))
return cam_infos
def readNerfSyntheticInfo(path, white_background, eval, preset=None, extension=".png"):
print("Reading Training Transforms")
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
print("Reading Test Transforms")
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
if preset:
preset_cam_infos = readCamerasFromPreset('/home/chung/workspace/gaussian-splatting/poses_supplementary', f"{preset}.json")
else:
preset_cam_infos = None
if not eval:
train_cam_infos.extend(test_cam_infos)
test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "points3d.ply")
if not os.path.exists(ply_path):
# Since this data set has no colmap data, we start with random points
num_pts = 100_000
print(f"Generating random point cloud ({num_pts})...")
# We create random points inside the bounds of the synthetic Blender scenes
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
shs = np.random.random((num_pts, 3)) / 255.0
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))
storePly(ply_path, xyz, SH2RGB(shs) * 255)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
preset_cameras=preset_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path)
return scene_info
def loadCamerasFromData(traindata, white_background):
cameras = []
fovx = traindata["camera_angle_x"]
frames = traindata["frames"]
for idx, frame in enumerate(frames):
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
image = frame["image"] if "image" in frame else None
im_data = np.array(image.convert("RGBA"))
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
norm_data = im_data / 255.0
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
loaded_mask = np.ones_like(norm_data[:, :, 3:4])
fovy = focal2fov(fov2focal(fovx, image.size[1]), image.size[0])
FovY = fovy
FovX = fovx
image = torch.Tensor(arr).permute(2,0,1)
loaded_mask = None #torch.Tensor(loaded_mask).permute(2,0,1)
### torch로 바꿔야함
cameras.append(Camera(colmap_id=idx, R=R, T=T, FoVx=FovX, FoVy=FovY, image=image,
gt_alpha_mask=loaded_mask, image_name='', uid=idx, data_device='cuda'))
return cameras
def loadCameraPreset(traindata, presetdata):
cam_infos = {}
## camera setting (for H, W and focal)
fovx = traindata["camera_angle_x"] * 1.2
W, H = traindata["frames"][0]["image"].size
# W, H = traindata["W"], traindata["H"]
for camkey in presetdata:
cam_infos[camkey] = []
for idx, frame in enumerate(presetdata[camkey]["frames"]):
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
fovy = focal2fov(fov2focal(fovx, W), H)
FovY = fovy
FovX = fovx
znear, zfar = 0.01, 100
world_view_transform = torch.tensor(getWorld2View2(R, T, np.array([0.0, 0.0, 0.0]), 1.0)).transpose(0, 1).cuda()
projection_matrix = getProjectionMatrix(znear=znear, zfar=zfar, fovX=FovX, fovY=FovY).transpose(0,1).cuda()
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
cam_infos[camkey].append(MiniCam(width=W, height=H, fovy=FovY, fovx=FovX, znear=znear, zfar=zfar,
world_view_transform=world_view_transform, full_proj_transform=full_proj_transform))
return cam_infos
def readDataInfo(traindata, white_background):
print("Reading Training Transforms")
train_cameras = loadCamerasFromData(traindata, white_background)
preset_minicams = loadCameraPreset(traindata, presetdata=get_camerapaths())
# if not eval:
# train_cam_infos.extend(test_cam_infos)
# test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cameras)
pcd = BasicPointCloud(points=traindata['pcd_points'].T, colors=traindata['pcd_colors'], normals=None)
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cameras,
test_cameras=[],
preset_cameras=preset_minicams,
nerf_normalization=nerf_normalization,
ply_path='')
return scene_info
sceneLoadTypeCallbacks = {
"Colmap": readColmapSceneInfo,
"Blender" : readNerfSyntheticInfo
} |