Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import torch | |
import torch.cuda.amp as amp | |
import torch.nn as nn | |
from zoedepth.trainers.loss import GradL1Loss, SILogLoss | |
from zoedepth.utils.config import DATASETS_CONFIG | |
from zoedepth.utils.misc import compute_metrics | |
from zoedepth.data.preprocess import get_black_border | |
from .base_trainer import BaseTrainer | |
from torchvision import transforms | |
from PIL import Image | |
import numpy as np | |
class Trainer(BaseTrainer): | |
def __init__(self, config, model, train_loader, test_loader=None, device=None): | |
super().__init__(config, model, train_loader, | |
test_loader=test_loader, device=device) | |
self.device = device | |
self.silog_loss = SILogLoss() | |
self.grad_loss = GradL1Loss() | |
self.scaler = amp.GradScaler(enabled=self.config.use_amp) | |
def train_on_batch(self, batch, train_step): | |
""" | |
Expects a batch of images and depth as input | |
batch["image"].shape : batch_size, c, h, w | |
batch["depth"].shape : batch_size, 1, h, w | |
""" | |
images, depths_gt = batch['image'].to( | |
self.device), batch['depth'].to(self.device) | |
dataset = batch['dataset'][0] | |
b, c, h, w = images.size() | |
mask = batch["mask"].to(self.device).to(torch.bool) | |
losses = {} | |
with amp.autocast(enabled=self.config.use_amp): | |
output = self.model(images) | |
pred_depths = output['metric_depth'] | |
l_si, pred = self.silog_loss( | |
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True) | |
loss = self.config.w_si * l_si | |
losses[self.silog_loss.name] = l_si | |
if self.config.w_grad > 0: | |
l_grad = self.grad_loss(pred, depths_gt, mask=mask) | |
loss = loss + self.config.w_grad * l_grad | |
losses[self.grad_loss.name] = l_grad | |
else: | |
l_grad = torch.Tensor([0]) | |
self.scaler.scale(loss).backward() | |
if self.config.clip_grad > 0: | |
self.scaler.unscale_(self.optimizer) | |
nn.utils.clip_grad_norm_( | |
self.model.parameters(), self.config.clip_grad) | |
self.scaler.step(self.optimizer) | |
if self.should_log and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0: | |
# -99 is treated as invalid depth in the log_images function and is colored grey. | |
depths_gt[torch.logical_not(mask)] = -99 | |
self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train", | |
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth']) | |
if self.config.get("log_rel", False): | |
self.log_images( | |
scalar_field={"RelPred": output["relative_depth"][0]}, prefix="TrainRel") | |
self.scaler.update() | |
self.optimizer.zero_grad() | |
return losses | |
def eval_infer(self, x): | |
with amp.autocast(enabled=self.config.use_amp): | |
m = self.model.module if self.config.multigpu else self.model | |
pred_depths = m(x)['metric_depth'] | |
return pred_depths | |
def crop_aware_infer(self, x): | |
# if we are not avoiding the black border, we can just use the normal inference | |
if not self.config.get("avoid_boundary", False): | |
return self.eval_infer(x) | |
# otherwise, we need to crop the image to avoid the black border | |
# For now, this may be a bit slow due to converting to numpy and back | |
# We assume no normalization is done on the input image | |
# get the black border | |
assert x.shape[0] == 1, "Only batch size 1 is supported for now" | |
x_pil = transforms.ToPILImage()(x[0].cpu()) | |
x_np = np.array(x_pil, dtype=np.uint8) | |
black_border_params = get_black_border(x_np) | |
top, bottom, left, right = black_border_params.top, black_border_params.bottom, black_border_params.left, black_border_params.right | |
x_np_cropped = x_np[top:bottom, left:right, :] | |
x_cropped = transforms.ToTensor()(Image.fromarray(x_np_cropped)) | |
# run inference on the cropped image | |
pred_depths_cropped = self.eval_infer(x_cropped.unsqueeze(0).to(self.device)) | |
# resize the prediction to x_np_cropped's size | |
pred_depths_cropped = nn.functional.interpolate( | |
pred_depths_cropped, size=(x_np_cropped.shape[0], x_np_cropped.shape[1]), mode="bilinear", align_corners=False) | |
# pad the prediction back to the original size | |
pred_depths = torch.zeros((1, 1, x_np.shape[0], x_np.shape[1]), device=pred_depths_cropped.device, dtype=pred_depths_cropped.dtype) | |
pred_depths[:, :, top:bottom, left:right] = pred_depths_cropped | |
return pred_depths | |
def validate_on_batch(self, batch, val_step): | |
images = batch['image'].to(self.device) | |
depths_gt = batch['depth'].to(self.device) | |
dataset = batch['dataset'][0] | |
mask = batch["mask"].to(self.device) | |
if 'has_valid_depth' in batch: | |
if not batch['has_valid_depth']: | |
return None, None | |
depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0) | |
mask = mask.squeeze().unsqueeze(0).unsqueeze(0) | |
if dataset == 'nyu': | |
pred_depths = self.crop_aware_infer(images) | |
else: | |
pred_depths = self.eval_infer(images) | |
pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0) | |
with amp.autocast(enabled=self.config.use_amp): | |
l_depth = self.silog_loss( | |
pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True) | |
metrics = compute_metrics(depths_gt, pred_depths, **self.config) | |
losses = {f"{self.silog_loss.name}": l_depth.item()} | |
if val_step == 1 and self.should_log: | |
depths_gt[torch.logical_not(mask)] = -99 | |
self.log_images(rgb={"Input": images[0]}, depth={"GT": depths_gt[0], "PredictedMono": pred_depths[0]}, prefix="Test", | |
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth']) | |
return metrics, losses | |