Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import itertools | |
import torch | |
import torch.nn as nn | |
from zoedepth.models.depth_model import DepthModel | |
from zoedepth.models.base_models.midas import MidasCore | |
from zoedepth.models.layers.attractor import AttractorLayer, AttractorLayerUnnormed | |
from zoedepth.models.layers.dist_layers import ConditionalLogBinomial | |
from zoedepth.models.layers.localbins_layers import (Projector, SeedBinRegressor, | |
SeedBinRegressorUnnormed) | |
from zoedepth.models.layers.patch_transformer import PatchTransformerEncoder | |
from zoedepth.models.model_io import load_state_from_resource | |
class ZoeDepthNK(DepthModel): | |
def __init__(self, core, bin_conf, bin_centers_type="softplus", bin_embedding_dim=128, | |
n_attractors=[16, 8, 4, 1], attractor_alpha=300, attractor_gamma=2, attractor_kind='sum', attractor_type='exp', | |
min_temp=5, max_temp=50, | |
memory_efficient=False, train_midas=True, | |
is_midas_pretrained=True, midas_lr_factor=1, encoder_lr_factor=10, pos_enc_lr_factor=10, inverse_midas=False, **kwargs): | |
"""ZoeDepthNK model. This is the version of ZoeDepth that has two metric heads and uses a learned router to route to experts. | |
Args: | |
core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features | |
bin_conf (List[dict]): A list of dictionaries that contain the bin configuration for each metric head. Each dictionary should contain the following keys: | |
"name" (str, typically same as the dataset name), "n_bins" (int), "min_depth" (float), "max_depth" (float) | |
The length of this list determines the number of metric heads. | |
bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. | |
For "softplus", softplus activation is used and thus are unbounded. Defaults to "normed". | |
bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128. | |
n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1]. | |
attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300. | |
attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2. | |
attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'. | |
attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'. | |
min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5. | |
max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50. | |
memory_efficient (bool, optional): Whether to use memory efficient version of attractor layers. Memory efficient version is slower but is recommended incase of multiple metric heads in order save GPU memory. Defaults to False. | |
train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True. | |
is_midas_pretrained (bool, optional): Is "core" pretrained? Defaults to True. | |
midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10. | |
encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10. | |
pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10. | |
""" | |
super().__init__() | |
self.core = core | |
self.bin_conf = bin_conf | |
self.min_temp = min_temp | |
self.max_temp = max_temp | |
self.memory_efficient = memory_efficient | |
self.train_midas = train_midas | |
self.is_midas_pretrained = is_midas_pretrained | |
self.midas_lr_factor = midas_lr_factor | |
self.encoder_lr_factor = encoder_lr_factor | |
self.pos_enc_lr_factor = pos_enc_lr_factor | |
self.inverse_midas = inverse_midas | |
N_MIDAS_OUT = 32 | |
btlnck_features = self.core.output_channels[0] | |
num_out_features = self.core.output_channels[1:] | |
# self.scales = [16, 8, 4, 2] # spatial scale factors | |
self.conv2 = nn.Conv2d( | |
btlnck_features, btlnck_features, kernel_size=1, stride=1, padding=0) | |
# Transformer classifier on the bottleneck | |
self.patch_transformer = PatchTransformerEncoder( | |
btlnck_features, 1, 128, use_class_token=True) | |
self.mlp_classifier = nn.Sequential( | |
nn.Linear(128, 128), | |
nn.ReLU(), | |
nn.Linear(128, 2) | |
) | |
if bin_centers_type == "normed": | |
SeedBinRegressorLayer = SeedBinRegressor | |
Attractor = AttractorLayer | |
elif bin_centers_type == "softplus": | |
SeedBinRegressorLayer = SeedBinRegressorUnnormed | |
Attractor = AttractorLayerUnnormed | |
elif bin_centers_type == "hybrid1": | |
SeedBinRegressorLayer = SeedBinRegressor | |
Attractor = AttractorLayerUnnormed | |
elif bin_centers_type == "hybrid2": | |
SeedBinRegressorLayer = SeedBinRegressorUnnormed | |
Attractor = AttractorLayer | |
else: | |
raise ValueError( | |
"bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'") | |
self.bin_centers_type = bin_centers_type | |
# We have bins for each bin conf. | |
# Create a map (ModuleDict) of 'name' -> seed_bin_regressor | |
self.seed_bin_regressors = nn.ModuleDict( | |
{conf['name']: SeedBinRegressorLayer(btlnck_features, conf["n_bins"], mlp_dim=bin_embedding_dim//2, min_depth=conf["min_depth"], max_depth=conf["max_depth"]) | |
for conf in bin_conf} | |
) | |
self.seed_projector = Projector( | |
btlnck_features, bin_embedding_dim, mlp_dim=bin_embedding_dim//2) | |
self.projectors = nn.ModuleList([ | |
Projector(num_out, bin_embedding_dim, mlp_dim=bin_embedding_dim//2) | |
for num_out in num_out_features | |
]) | |
# Create a map (ModuleDict) of 'name' -> attractors (ModuleList) | |
self.attractors = nn.ModuleDict( | |
{conf['name']: nn.ModuleList([ | |
Attractor(bin_embedding_dim, n_attractors[i], | |
mlp_dim=bin_embedding_dim, alpha=attractor_alpha, | |
gamma=attractor_gamma, kind=attractor_kind, | |
attractor_type=attractor_type, memory_efficient=memory_efficient, | |
min_depth=conf["min_depth"], max_depth=conf["max_depth"]) | |
for i in range(len(n_attractors)) | |
]) | |
for conf in bin_conf} | |
) | |
last_in = N_MIDAS_OUT | |
# conditional log binomial for each bin conf | |
self.conditional_log_binomial = nn.ModuleDict( | |
{conf['name']: ConditionalLogBinomial(last_in, bin_embedding_dim, conf['n_bins'], bottleneck_factor=4, min_temp=self.min_temp, max_temp=self.max_temp) | |
for conf in bin_conf} | |
) | |
def forward(self, x, return_final_centers=False, denorm=False, return_probs=False, **kwargs): | |
""" | |
Args: | |
x (torch.Tensor): Input image tensor of shape (B, C, H, W). Assumes all images are from the same domain. | |
return_final_centers (bool, optional): Whether to return the final centers of the attractors. Defaults to False. | |
denorm (bool, optional): Whether to denormalize the input image. Defaults to False. | |
return_probs (bool, optional): Whether to return the probabilities of the bins. Defaults to False. | |
Returns: | |
dict: Dictionary of outputs with keys: | |
- "rel_depth": Relative depth map of shape (B, 1, H, W) | |
- "metric_depth": Metric depth map of shape (B, 1, H, W) | |
- "domain_logits": Domain logits of shape (B, 2) | |
- "bin_centers": Bin centers of shape (B, N, H, W). Present only if return_final_centers is True | |
- "probs": Bin probabilities of shape (B, N, H, W). Present only if return_probs is True | |
""" | |
b, c, h, w = x.shape | |
self.orig_input_width = w | |
self.orig_input_height = h | |
rel_depth, out = self.core(x, denorm=denorm, return_rel_depth=True) | |
outconv_activation = out[0] | |
btlnck = out[1] | |
x_blocks = out[2:] | |
x_d0 = self.conv2(btlnck) | |
x = x_d0 | |
# Predict which path to take | |
embedding = self.patch_transformer(x)[0] # N, E | |
domain_logits = self.mlp_classifier(embedding) # N, 2 | |
domain_vote = torch.softmax(domain_logits.sum( | |
dim=0, keepdim=True), dim=-1) # 1, 2 | |
# Get the path | |
bin_conf_name = ["nyu", "kitti"][torch.argmax( | |
domain_vote, dim=-1).squeeze().item()] | |
try: | |
conf = [c for c in self.bin_conf if c.name == bin_conf_name][0] | |
except IndexError: | |
raise ValueError( | |
f"bin_conf_name {bin_conf_name} not found in bin_confs") | |
min_depth = conf['min_depth'] | |
max_depth = conf['max_depth'] | |
seed_bin_regressor = self.seed_bin_regressors[bin_conf_name] | |
_, seed_b_centers = seed_bin_regressor(x) | |
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2': | |
b_prev = (seed_b_centers - min_depth)/(max_depth - min_depth) | |
else: | |
b_prev = seed_b_centers | |
prev_b_embedding = self.seed_projector(x) | |
attractors = self.attractors[bin_conf_name] | |
for projector, attractor, x in zip(self.projectors, attractors, x_blocks): | |
b_embedding = projector(x) | |
b, b_centers = attractor( | |
b_embedding, b_prev, prev_b_embedding, interpolate=True) | |
b_prev = b | |
prev_b_embedding = b_embedding | |
last = outconv_activation | |
b_centers = nn.functional.interpolate( | |
b_centers, last.shape[-2:], mode='bilinear', align_corners=True) | |
b_embedding = nn.functional.interpolate( | |
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True) | |
clb = self.conditional_log_binomial[bin_conf_name] | |
x = clb(last, b_embedding) | |
# Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor | |
# print(x.shape, b_centers.shape) | |
# b_centers = nn.functional.interpolate(b_centers, x.shape[-2:], mode='bilinear', align_corners=True) | |
out = torch.sum(x * b_centers, dim=1, keepdim=True) | |
output = dict(domain_logits=domain_logits, metric_depth=out) | |
if return_final_centers or return_probs: | |
output['bin_centers'] = b_centers | |
if return_probs: | |
output['probs'] = x | |
return output | |
def get_lr_params(self, lr): | |
""" | |
Learning rate configuration for different layers of the model | |
Args: | |
lr (float) : Base learning rate | |
Returns: | |
list : list of parameters to optimize and their learning rates, in the format required by torch optimizers. | |
""" | |
param_conf = [] | |
if self.train_midas: | |
def get_rel_pos_params(): | |
for name, p in self.core.core.pretrained.named_parameters(): | |
if "relative_position" in name: | |
yield p | |
def get_enc_params_except_rel_pos(): | |
for name, p in self.core.core.pretrained.named_parameters(): | |
if "relative_position" not in name: | |
yield p | |
encoder_params = get_enc_params_except_rel_pos() | |
rel_pos_params = get_rel_pos_params() | |
midas_params = self.core.core.scratch.parameters() | |
midas_lr_factor = self.midas_lr_factor if self.is_midas_pretrained else 1.0 | |
param_conf.extend([ | |
{'params': encoder_params, 'lr': lr / self.encoder_lr_factor}, | |
{'params': rel_pos_params, 'lr': lr / self.pos_enc_lr_factor}, | |
{'params': midas_params, 'lr': lr / midas_lr_factor} | |
]) | |
remaining_modules = [] | |
for name, child in self.named_children(): | |
if name != 'core': | |
remaining_modules.append(child) | |
remaining_params = itertools.chain( | |
*[child.parameters() for child in remaining_modules]) | |
param_conf.append({'params': remaining_params, 'lr': lr}) | |
return param_conf | |
def get_conf_parameters(self, conf_name): | |
""" | |
Returns parameters of all the ModuleDicts children that are exclusively used for the given bin configuration | |
""" | |
params = [] | |
for name, child in self.named_children(): | |
if isinstance(child, nn.ModuleDict): | |
for bin_conf_name, module in child.items(): | |
if bin_conf_name == conf_name: | |
params += list(module.parameters()) | |
return params | |
def freeze_conf(self, conf_name): | |
""" | |
Freezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration | |
""" | |
for p in self.get_conf_parameters(conf_name): | |
p.requires_grad = False | |
def unfreeze_conf(self, conf_name): | |
""" | |
Unfreezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration | |
""" | |
for p in self.get_conf_parameters(conf_name): | |
p.requires_grad = True | |
def freeze_all_confs(self): | |
""" | |
Freezes all the parameters of all the ModuleDicts children | |
""" | |
for name, child in self.named_children(): | |
if isinstance(child, nn.ModuleDict): | |
for bin_conf_name, module in child.items(): | |
for p in module.parameters(): | |
p.requires_grad = False | |
def build(midas_model_type="DPT_BEiT_L_384", pretrained_resource=None, use_pretrained_midas=False, train_midas=False, freeze_midas_bn=True, **kwargs): | |
core = MidasCore.build(midas_model_type=midas_model_type, use_pretrained_midas=use_pretrained_midas, | |
train_midas=train_midas, fetch_features=True, freeze_bn=freeze_midas_bn, **kwargs) | |
model = ZoeDepthNK(core, **kwargs) | |
if pretrained_resource: | |
assert isinstance(pretrained_resource, str), "pretrained_resource must be a string" | |
model = load_state_from_resource(model, pretrained_resource) | |
return model | |
def build_from_config(config): | |
return ZoeDepthNK.build(**config) | |