ironjr's picture
Upload folder using huggingface_hub
186c7d4
raw
history blame
12.6 kB
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "rasterizer_impl.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <numeric>
#include <cuda.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#define GLM_FORCE_CUDA
#include <glm/glm.hpp>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
#include "auxiliary.h"
#include "forward.h"
#include "backward.h"
// Helper function to find the next-highest bit of the MSB
// on the CPU.
uint32_t getHigherMsb(uint32_t n)
{
uint32_t msb = sizeof(n) * 4;
uint32_t step = msb;
while (step > 1)
{
step /= 2;
if (n >> msb)
msb += step;
else
msb -= step;
}
if (n >> msb)
msb++;
return msb;
}
// Wrapper method to call auxiliary coarse frustum containment test.
// Mark all Gaussians that pass it.
__global__ void checkFrustum(int P,
const float* orig_points,
const float* viewmatrix,
const float* projmatrix,
bool* present)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
float3 p_view;
present[idx] = in_frustum(idx, orig_points, viewmatrix, projmatrix, false, p_view);
}
// Generates one key/value pair for all Gaussian / tile overlaps.
// Run once per Gaussian (1:N mapping).
__global__ void duplicateWithKeys(
int P,
const float2* points_xy,
const float* depths,
const uint32_t* offsets,
uint64_t* gaussian_keys_unsorted,
uint32_t* gaussian_values_unsorted,
int* radii,
dim3 grid)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
// Generate no key/value pair for invisible Gaussians
if (radii[idx] > 0)
{
// Find this Gaussian's offset in buffer for writing keys/values.
uint32_t off = (idx == 0) ? 0 : offsets[idx - 1];
uint2 rect_min, rect_max;
getRect(points_xy[idx], radii[idx], rect_min, rect_max, grid);
// For each tile that the bounding rect overlaps, emit a
// key/value pair. The key is | tile ID | depth |,
// and the value is the ID of the Gaussian. Sorting the values
// with this key yields Gaussian IDs in a list, such that they
// are first sorted by tile and then by depth.
for (int y = rect_min.y; y < rect_max.y; y++)
{
for (int x = rect_min.x; x < rect_max.x; x++)
{
uint64_t key = y * grid.x + x;
key <<= 32;
key |= *((uint32_t*)&depths[idx]);
gaussian_keys_unsorted[off] = key;
gaussian_values_unsorted[off] = idx;
off++;
}
}
}
}
// Check keys to see if it is at the start/end of one tile's range in
// the full sorted list. If yes, write start/end of this tile.
// Run once per instanced (duplicated) Gaussian ID.
__global__ void identifyTileRanges(int L, uint64_t* point_list_keys, uint2* ranges)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= L)
return;
// Read tile ID from key. Update start/end of tile range if at limit.
uint64_t key = point_list_keys[idx];
uint32_t currtile = key >> 32;
if (idx == 0)
ranges[currtile].x = 0;
else
{
uint32_t prevtile = point_list_keys[idx - 1] >> 32;
if (currtile != prevtile)
{
ranges[prevtile].y = idx;
ranges[currtile].x = idx;
}
}
if (idx == L - 1)
ranges[currtile].y = L;
}
// Mark Gaussians as visible/invisible, based on view frustum testing
void CudaRasterizer::Rasterizer::markVisible(
int P,
float* means3D,
float* viewmatrix,
float* projmatrix,
bool* present)
{
checkFrustum << <(P + 255) / 256, 256 >> > (
P,
means3D,
viewmatrix, projmatrix,
present);
}
CudaRasterizer::GeometryState CudaRasterizer::GeometryState::fromChunk(char*& chunk, size_t P)
{
GeometryState geom;
obtain(chunk, geom.depths, P, 128);
obtain(chunk, geom.clamped, P * 3, 128);
obtain(chunk, geom.internal_radii, P, 128);
obtain(chunk, geom.means2D, P, 128);
obtain(chunk, geom.cov3D, P * 6, 128);
obtain(chunk, geom.conic_opacity, P, 128);
obtain(chunk, geom.rgb, P * 3, 128);
obtain(chunk, geom.tiles_touched, P, 128);
cub::DeviceScan::InclusiveSum(nullptr, geom.scan_size, geom.tiles_touched, geom.tiles_touched, P);
obtain(chunk, geom.scanning_space, geom.scan_size, 128);
obtain(chunk, geom.point_offsets, P, 128);
return geom;
}
CudaRasterizer::ImageState CudaRasterizer::ImageState::fromChunk(char*& chunk, size_t N)
{
ImageState img;
obtain(chunk, img.accum_alpha, N, 128);
obtain(chunk, img.n_contrib, N, 128);
obtain(chunk, img.ranges, N, 128);
return img;
}
CudaRasterizer::BinningState CudaRasterizer::BinningState::fromChunk(char*& chunk, size_t P)
{
BinningState binning;
obtain(chunk, binning.point_list, P, 128);
obtain(chunk, binning.point_list_unsorted, P, 128);
obtain(chunk, binning.point_list_keys, P, 128);
obtain(chunk, binning.point_list_keys_unsorted, P, 128);
cub::DeviceRadixSort::SortPairs(
nullptr, binning.sorting_size,
binning.point_list_keys_unsorted, binning.point_list_keys,
binning.point_list_unsorted, binning.point_list, P);
obtain(chunk, binning.list_sorting_space, binning.sorting_size, 128);
return binning;
}
// Forward rendering procedure for differentiable rasterization
// of Gaussians.
int CudaRasterizer::Rasterizer::forward(
std::function<char* (size_t)> geometryBuffer,
std::function<char* (size_t)> binningBuffer,
std::function<char* (size_t)> imageBuffer,
const int P, int D, int M,
const float* background,
const int width, int height,
const float* means3D,
const float* shs,
const float* colors_precomp,
const float* opacities,
const float* scales,
const float scale_modifier,
const float* rotations,
const float* cov3D_precomp,
const float* viewmatrix,
const float* projmatrix,
const float* cam_pos,
const float tan_fovx, float tan_fovy,
const bool prefiltered,
float* out_color,
float* out_depth,
int* radii,
bool debug)
{
const float focal_y = height / (2.0f * tan_fovy);
const float focal_x = width / (2.0f * tan_fovx);
size_t chunk_size = required<GeometryState>(P);
char* chunkptr = geometryBuffer(chunk_size);
GeometryState geomState = GeometryState::fromChunk(chunkptr, P);
if (radii == nullptr)
{
radii = geomState.internal_radii;
}
dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
dim3 block(BLOCK_X, BLOCK_Y, 1);
// Dynamically resize image-based auxiliary buffers during training
size_t img_chunk_size = required<ImageState>(width * height);
char* img_chunkptr = imageBuffer(img_chunk_size);
ImageState imgState = ImageState::fromChunk(img_chunkptr, width * height);
if (NUM_CHANNELS != 3 && colors_precomp == nullptr)
{
throw std::runtime_error("For non-RGB, provide precomputed Gaussian colors!");
}
// Run preprocessing per-Gaussian (transformation, bounding, conversion of SHs to RGB)
CHECK_CUDA(FORWARD::preprocess(
P, D, M,
means3D,
(glm::vec3*)scales,
scale_modifier,
(glm::vec4*)rotations,
opacities,
shs,
geomState.clamped,
cov3D_precomp,
colors_precomp,
viewmatrix, projmatrix,
(glm::vec3*)cam_pos,
width, height,
focal_x, focal_y,
tan_fovx, tan_fovy,
radii,
geomState.means2D,
geomState.depths,
geomState.cov3D,
geomState.rgb,
geomState.conic_opacity,
tile_grid,
geomState.tiles_touched,
prefiltered
), debug)
// Compute prefix sum over full list of touched tile counts by Gaussians
// E.g., [2, 3, 0, 2, 1] -> [2, 5, 5, 7, 8]
CHECK_CUDA(cub::DeviceScan::InclusiveSum(geomState.scanning_space, geomState.scan_size, geomState.tiles_touched, geomState.point_offsets, P), debug)
// Retrieve total number of Gaussian instances to launch and resize aux buffers
int num_rendered;
CHECK_CUDA(cudaMemcpy(&num_rendered, geomState.point_offsets + P - 1, sizeof(int), cudaMemcpyDeviceToHost), debug);
size_t binning_chunk_size = required<BinningState>(num_rendered);
char* binning_chunkptr = binningBuffer(binning_chunk_size);
BinningState binningState = BinningState::fromChunk(binning_chunkptr, num_rendered);
// For each instance to be rendered, produce adequate [ tile | depth ] key
// and corresponding dublicated Gaussian indices to be sorted
duplicateWithKeys << <(P + 255) / 256, 256 >> > (
P,
geomState.means2D,
geomState.depths,
geomState.point_offsets,
binningState.point_list_keys_unsorted,
binningState.point_list_unsorted,
radii,
tile_grid)
CHECK_CUDA(, debug)
int bit = getHigherMsb(tile_grid.x * tile_grid.y);
// Sort complete list of (duplicated) Gaussian indices by keys
CHECK_CUDA(cub::DeviceRadixSort::SortPairs(
binningState.list_sorting_space,
binningState.sorting_size,
binningState.point_list_keys_unsorted, binningState.point_list_keys,
binningState.point_list_unsorted, binningState.point_list,
num_rendered, 0, 32 + bit), debug)
CHECK_CUDA(cudaMemset(imgState.ranges, 0, tile_grid.x * tile_grid.y * sizeof(uint2)), debug);
// Identify start and end of per-tile workloads in sorted list
if (num_rendered > 0)
identifyTileRanges << <(num_rendered + 255) / 256, 256 >> > (
num_rendered,
binningState.point_list_keys,
imgState.ranges);
CHECK_CUDA(, debug)
// Let each tile blend its range of Gaussians independently in parallel
const float* feature_ptr = colors_precomp != nullptr ? colors_precomp : geomState.rgb;
CHECK_CUDA(FORWARD::render(
tile_grid, block,
imgState.ranges,
binningState.point_list,
width, height,
geomState.means2D,
feature_ptr,
geomState.depths,
geomState.conic_opacity,
imgState.accum_alpha,
imgState.n_contrib,
background,
out_color,
out_depth), debug)
return num_rendered;
}
// Produce necessary gradients for optimization, corresponding
// to forward render pass
void CudaRasterizer::Rasterizer::backward(
const int P, int D, int M, int R,
const float* background,
const int width, int height,
const float* means3D,
const float* shs,
const float* colors_precomp,
const float* scales,
const float scale_modifier,
const float* rotations,
const float* cov3D_precomp,
const float* viewmatrix,
const float* projmatrix,
const float* campos,
const float tan_fovx, float tan_fovy,
const int* radii,
char* geom_buffer,
char* binning_buffer,
char* img_buffer,
const float* dL_dpix,
const float* dL_depths,
float* dL_dmean2D,
float* dL_dconic,
float* dL_dopacity,
float* dL_dcolor,
float* dL_dmean3D,
float* dL_dcov3D,
float* dL_dsh,
float* dL_dscale,
float* dL_drot,
bool debug)
{
GeometryState geomState = GeometryState::fromChunk(geom_buffer, P);
BinningState binningState = BinningState::fromChunk(binning_buffer, R);
ImageState imgState = ImageState::fromChunk(img_buffer, width * height);
if (radii == nullptr)
{
radii = geomState.internal_radii;
}
const float focal_y = height / (2.0f * tan_fovy);
const float focal_x = width / (2.0f * tan_fovx);
const dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
const dim3 block(BLOCK_X, BLOCK_Y, 1);
// Compute loss gradients w.r.t. 2D mean position, conic matrix,
// opacity and RGB of Gaussians from per-pixel loss gradients.
// If we were given precomputed colors and not SHs, use them.
const float* color_ptr = (colors_precomp != nullptr) ? colors_precomp : geomState.rgb;
const float* depth_ptr = geomState.depths;
CHECK_CUDA(BACKWARD::render(
tile_grid,
block,
imgState.ranges,
binningState.point_list,
width, height,
background,
geomState.means2D,
geomState.conic_opacity,
(float3*)means3D,
color_ptr,
depth_ptr,
projmatrix,
imgState.accum_alpha,
imgState.n_contrib,
dL_dpix,
dL_depths,
(float3*)dL_dmean2D,
(float4*)dL_dconic,
(float3*)dL_dmean3D,
dL_dopacity,
dL_dcolor), debug)
// Take care of the rest of preprocessing. Was the precomputed covariance
// given to us or a scales/rot pair? If precomputed, pass that. If not,
// use the one we computed ourselves.
const float* cov3D_ptr = (cov3D_precomp != nullptr) ? cov3D_precomp : geomState.cov3D;
CHECK_CUDA(BACKWARD::preprocess(P, D, M,
(float3*)means3D,
radii,
shs,
geomState.clamped,
(glm::vec3*)scales,
(glm::vec4*)rotations,
scale_modifier,
cov3D_ptr,
viewmatrix,
projmatrix,
focal_x, focal_y,
tan_fovx, tan_fovy,
(glm::vec3*)campos,
(float3*)dL_dmean2D,
dL_dconic,
(glm::vec3*)dL_dmean3D,
dL_dcolor,
dL_dcov3D,
dL_dsh,
(glm::vec3*)dL_dscale,
(glm::vec4*)dL_drot), debug)
}