import subprocess # Install transformers package subprocess.run(['pip', 'install', 'transformers']) # Import transformers module from transformers import pipeline import streamlit as st # Summarization def summarization(text): text_model = pipeline("text-generation", model="ainize/bart-base-cnn") summary = text_model(text, max_length=100, temperature=1.0)[0]["generated_text"] return summary # Sentiment Classification def sentiment_classification(summary): sentiment_model = pipeline("text-classification", model="wxrrrrrrr/finetunde_sentiment_analysis") result = sentiment_model(summary, max_length=100, truncation=True)[0]['label'] if result != 'negative': result = 'positive' return result def main(): st.set_page_config(page_title="Your Text Analysis", page_icon="🦜") st.header("Tell me your comments!") text_input = st.text_input("Enter your text here:") if text_input: # Stage 1: Summarization st.text('Processing text...') summary = summarization(text_input) # st.write(summary) # Stage 2: Sentiment Classification st.text('Analyzing sentiment...') sentiment = sentiment_classification(summary) st.write(sentiment) # Display the classification result st.write("Sentiment:", sentiment) if __name__ == '__main__': main()