Spaces:
Running
Running
Ubuntu
commited on
Commit
·
ae4c73e
1
Parent(s):
2b96898
Original version
Browse files- README.md +5 -7
- app.py +169 -0
- requirements.txt +7 -0
- safety_checker.py +137 -0
- style.css +12 -0
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
title: SDXL Lightning
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.19.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: openrail
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: SDXL Lightning
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: openrail
|
11 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
import os
|
8 |
+
from PIL import Image, ImageFilter
|
9 |
+
from typing import List, Tuple
|
10 |
+
|
11 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
15 |
+
repo = "ByteDance/SDXL-Lightning"
|
16 |
+
checkpoints = {
|
17 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
18 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
19 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
20 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
21 |
+
}
|
22 |
+
aspect_ratios = {
|
23 |
+
"21:9": (21, 9),
|
24 |
+
"2:1": (2, 1),
|
25 |
+
"16:9": (16, 9),
|
26 |
+
"5:4": (5, 4),
|
27 |
+
"4:3": (4, 3),
|
28 |
+
"3:2": (3, 2),
|
29 |
+
"1:1": (1, 1),
|
30 |
+
}
|
31 |
+
# Function to calculate resolution
|
32 |
+
def calculate_resolution(aspect_ratio, mode='landscape', total_pixels=1024*1024, divisibility=8):
|
33 |
+
if aspect_ratio not in aspect_ratios:
|
34 |
+
raise ValueError(f"Invalid aspect ratio: {aspect_ratio}")
|
35 |
+
|
36 |
+
width_multiplier, height_multiplier = aspect_ratios[aspect_ratio]
|
37 |
+
ratio = width_multiplier / height_multiplier
|
38 |
+
if mode == 'portrait':
|
39 |
+
# Swap the ratio for portrait mode
|
40 |
+
ratio = 1 / ratio
|
41 |
+
|
42 |
+
height = int((total_pixels / ratio) ** 0.5)
|
43 |
+
height -= height % divisibility
|
44 |
+
|
45 |
+
width = int(height * ratio)
|
46 |
+
width -= width % divisibility
|
47 |
+
|
48 |
+
while width * height > total_pixels:
|
49 |
+
height -= divisibility
|
50 |
+
width = int(height * ratio)
|
51 |
+
width -= width % divisibility
|
52 |
+
|
53 |
+
return width, height
|
54 |
+
|
55 |
+
|
56 |
+
# Example prompts with ckpt, aspect, and mode
|
57 |
+
examples = [
|
58 |
+
{"prompt": "A futuristic cityscape at sunset", "ckpt": "4-Step", "aspect": "16:9", "mode": "landscape"},
|
59 |
+
{"prompt": "pair of shoes made of dried fruit skins, 3d render, bright colours, clean composition, beautiful artwork, logo", "ckpt": "2-Step", "aspect": "1:1", "mode": "portrait"},
|
60 |
+
{"prompt": "A portrait of a robot in the style of Renaissance art", "ckpt": "2-Step", "aspect": "1:1", "mode": "portrait"},
|
61 |
+
{"prompt": "full body of alien shaped like woman, big golden eyes, mars planet, photo, digital art, fantasy", "ckpt": "4-Step", "aspect": "1:1", "mode": "portrait"},
|
62 |
+
{"prompt": "A serene landscape with mountains and a river", "ckpt": "8-Step", "aspect": "3:2", "mode": "landscape"},
|
63 |
+
{"prompt": "post-apocalyptic wasteland, the most delicate beautiful flower with green leaves growing from dust and rubble, vibrant colours, cinematic", "ckpt": "8-Step", "aspect": "16:9", "mode": "landscape"}
|
64 |
+
]
|
65 |
+
# Define a function to set the example inputs
|
66 |
+
def set_example(selected_prompt):
|
67 |
+
# Find the example that matches the selected prompt
|
68 |
+
for example in examples:
|
69 |
+
if example["prompt"] == selected_prompt:
|
70 |
+
return example["prompt"], example["ckpt"], example["aspect"], example["mode"]
|
71 |
+
return None, None, None, None # Default values if not found
|
72 |
+
|
73 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
76 |
+
|
77 |
+
if SAFETY_CHECKER:
|
78 |
+
from safety_checker import StableDiffusionSafetyChecker
|
79 |
+
from transformers import CLIPFeatureExtractor
|
80 |
+
|
81 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
82 |
+
"CompVis/stable-diffusion-safety-checker"
|
83 |
+
).to("cuda")
|
84 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
85 |
+
"openai/clip-vit-base-patch32"
|
86 |
+
)
|
87 |
+
|
88 |
+
def check_nsfw_images(
|
89 |
+
images: List[Image.Image]
|
90 |
+
) -> Tuple[List[Image.Image], List[bool]]:
|
91 |
+
# Assuming feature_extractor and safety_checker are defined and initialized elsewhere
|
92 |
+
|
93 |
+
# Convert PIL Images to the format expected by the feature extractor
|
94 |
+
# This often involves converting them to tensors, but the exact method
|
95 |
+
# depends on the feature_extractor's requirements
|
96 |
+
safety_checker_inputs = [feature_extractor(image, return_tensors="pt").to("cuda") for image in images]
|
97 |
+
|
98 |
+
# Get NSFW concepts for each image
|
99 |
+
has_nsfw_concepts = [safety_checker(
|
100 |
+
images=[image],
|
101 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
102 |
+
) for image, safety_checker_input in zip(images, safety_checker_inputs)]
|
103 |
+
|
104 |
+
# Flatten the has_nsfw_concepts list if it's nested
|
105 |
+
has_nsfw_concepts = [item for sublist in has_nsfw_concepts for item in sublist]
|
106 |
+
|
107 |
+
return images, has_nsfw_concepts
|
108 |
+
|
109 |
+
# Function
|
110 |
+
@spaces.GPU(enable_queue=True)
|
111 |
+
def generate_image(prompt, ckpt, aspect_ratio, mode):
|
112 |
+
width, height = calculate_resolution(aspect_ratio, mode) # Calculate resolution based on the aspect ratio
|
113 |
+
checkpoint = checkpoints[ckpt][0]
|
114 |
+
num_inference_steps = checkpoints[ckpt][1]
|
115 |
+
|
116 |
+
if num_inference_steps==1:
|
117 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
118 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
119 |
+
else:
|
120 |
+
# Ensure sampler uses "trailing" timesteps.
|
121 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
122 |
+
|
123 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
124 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0, width=width, height=height )
|
125 |
+
|
126 |
+
if SAFETY_CHECKER:
|
127 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
128 |
+
if any(has_nsfw_concepts):
|
129 |
+
gr.Warning("NSFW content detected.")
|
130 |
+
# Apply a blur filter to the first image in the results
|
131 |
+
blurred_image = images[0].filter(ImageFilter.GaussianBlur(16)) # Adjust the radius as needed
|
132 |
+
return blurred_image
|
133 |
+
return images[0]
|
134 |
+
return results.images[0]
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
# Gradio Interface
|
139 |
+
description = """
|
140 |
+
SDXL-Lightning ByteDance model demo. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
141 |
+
"""
|
142 |
+
|
143 |
+
with gr.Blocks(css="style.css") as demo:
|
144 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
|
145 |
+
gr.Markdown(description)
|
146 |
+
with gr.Group():
|
147 |
+
with gr.Row():
|
148 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
149 |
+
with gr.Row():
|
150 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
151 |
+
aspect = gr.Dropdown(label='Aspect Ratio', choices=list(aspect_ratios.keys()), value='1:1', interactive=True)
|
152 |
+
mode = gr.Dropdown(label='Mode', choices=['landscape', 'portrait'], value='landscape') # Mode as a dropdown
|
153 |
+
submit = gr.Button(scale=1, variant='primary')
|
154 |
+
|
155 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
156 |
+
|
157 |
+
prompt.submit(fn=generate_image,
|
158 |
+
inputs=[prompt, ckpt, aspect, mode],
|
159 |
+
outputs=img,
|
160 |
+
)
|
161 |
+
submit.click(fn=generate_image,
|
162 |
+
inputs=[prompt, ckpt, aspect, mode],
|
163 |
+
outputs=img,
|
164 |
+
)
|
165 |
+
# Dropdown for selecting examples
|
166 |
+
example_dropdown = gr.Dropdown(label='Select an Example', choices=[e["prompt"] for e in examples])
|
167 |
+
example_dropdown.change(fn=set_example, inputs=example_dropdown, outputs=[prompt, ckpt, aspect, mode])
|
168 |
+
|
169 |
+
demo.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
diffusers
|
3 |
+
torch
|
4 |
+
accelerate
|
5 |
+
gradio
|
6 |
+
pillow
|
7 |
+
spaces
|
safety_checker.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
|
19 |
+
|
20 |
+
|
21 |
+
def cosine_distance(image_embeds, text_embeds):
|
22 |
+
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
23 |
+
normalized_text_embeds = nn.functional.normalize(text_embeds)
|
24 |
+
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
|
25 |
+
|
26 |
+
|
27 |
+
class StableDiffusionSafetyChecker(PreTrainedModel):
|
28 |
+
config_class = CLIPConfig
|
29 |
+
|
30 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
31 |
+
|
32 |
+
def __init__(self, config: CLIPConfig):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
self.vision_model = CLIPVisionModel(config.vision_config)
|
36 |
+
self.visual_projection = nn.Linear(
|
37 |
+
config.vision_config.hidden_size, config.projection_dim, bias=False
|
38 |
+
)
|
39 |
+
|
40 |
+
self.concept_embeds = nn.Parameter(
|
41 |
+
torch.ones(17, config.projection_dim), requires_grad=False
|
42 |
+
)
|
43 |
+
self.special_care_embeds = nn.Parameter(
|
44 |
+
torch.ones(3, config.projection_dim), requires_grad=False
|
45 |
+
)
|
46 |
+
|
47 |
+
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
|
48 |
+
self.special_care_embeds_weights = nn.Parameter(
|
49 |
+
torch.ones(3), requires_grad=False
|
50 |
+
)
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def forward(self, clip_input, images):
|
54 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
55 |
+
image_embeds = self.visual_projection(pooled_output)
|
56 |
+
|
57 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
58 |
+
special_cos_dist = (
|
59 |
+
cosine_distance(image_embeds, self.special_care_embeds)
|
60 |
+
.cpu()
|
61 |
+
.float()
|
62 |
+
.numpy()
|
63 |
+
)
|
64 |
+
cos_dist = (
|
65 |
+
cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
|
66 |
+
)
|
67 |
+
|
68 |
+
result = []
|
69 |
+
batch_size = image_embeds.shape[0]
|
70 |
+
for i in range(batch_size):
|
71 |
+
result_img = {
|
72 |
+
"special_scores": {},
|
73 |
+
"special_care": [],
|
74 |
+
"concept_scores": {},
|
75 |
+
"bad_concepts": [],
|
76 |
+
}
|
77 |
+
|
78 |
+
# increase this value to create a stronger `nfsw` filter
|
79 |
+
# at the cost of increasing the possibility of filtering benign images
|
80 |
+
adjustment = 0.0
|
81 |
+
|
82 |
+
for concept_idx in range(len(special_cos_dist[0])):
|
83 |
+
concept_cos = special_cos_dist[i][concept_idx]
|
84 |
+
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
|
85 |
+
result_img["special_scores"][concept_idx] = round(
|
86 |
+
concept_cos - concept_threshold + adjustment, 3
|
87 |
+
)
|
88 |
+
if result_img["special_scores"][concept_idx] > 0:
|
89 |
+
result_img["special_care"].append(
|
90 |
+
{concept_idx, result_img["special_scores"][concept_idx]}
|
91 |
+
)
|
92 |
+
adjustment = 0.01
|
93 |
+
|
94 |
+
for concept_idx in range(len(cos_dist[0])):
|
95 |
+
concept_cos = cos_dist[i][concept_idx]
|
96 |
+
concept_threshold = self.concept_embeds_weights[concept_idx].item()
|
97 |
+
result_img["concept_scores"][concept_idx] = round(
|
98 |
+
concept_cos - concept_threshold + adjustment, 3
|
99 |
+
)
|
100 |
+
if result_img["concept_scores"][concept_idx] > 0:
|
101 |
+
result_img["bad_concepts"].append(concept_idx)
|
102 |
+
|
103 |
+
result.append(result_img)
|
104 |
+
|
105 |
+
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
|
106 |
+
|
107 |
+
return has_nsfw_concepts
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
|
111 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
112 |
+
image_embeds = self.visual_projection(pooled_output)
|
113 |
+
|
114 |
+
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
|
115 |
+
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
|
116 |
+
|
117 |
+
# increase this value to create a stronger `nsfw` filter
|
118 |
+
# at the cost of increasing the possibility of filtering benign images
|
119 |
+
adjustment = 0.0
|
120 |
+
|
121 |
+
special_scores = (
|
122 |
+
special_cos_dist - self.special_care_embeds_weights + adjustment
|
123 |
+
)
|
124 |
+
# special_scores = special_scores.round(decimals=3)
|
125 |
+
special_care = torch.any(special_scores > 0, dim=1)
|
126 |
+
special_adjustment = special_care * 0.01
|
127 |
+
special_adjustment = special_adjustment.unsqueeze(1).expand(
|
128 |
+
-1, cos_dist.shape[1]
|
129 |
+
)
|
130 |
+
|
131 |
+
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
|
132 |
+
# concept_scores = concept_scores.round(decimals=3)
|
133 |
+
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
|
134 |
+
|
135 |
+
images[has_nsfw_concepts] = 0.0 # black image
|
136 |
+
|
137 |
+
return images, has_nsfw_concepts
|
style.css
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.gradio-container {
|
2 |
+
max-width: 690px! important;
|
3 |
+
}
|
4 |
+
|
5 |
+
#share-btn-container{padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;margin-top: 0.35em;}
|
6 |
+
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
|
7 |
+
#share-btn-container:hover {background-color: #060606}
|
8 |
+
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;font-size: 15px;}
|
9 |
+
#share-btn * {all: unset}
|
10 |
+
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
|
11 |
+
#share-btn-container .wrap {display: none !important}
|
12 |
+
#share-btn-container.hidden {display: none!important}
|