File size: 2,979 Bytes
7990fe7
 
 
 
 
 
 
 
 
 
 
 
 
9e887c5
7990fe7
 
 
 
 
 
3467e1c
7990fe7
 
cdfa0d1
7990fe7
 
cdfa0d1
daf5b6b
7990fe7
b286021
7990fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8d143
88c5423
 
 
 
7990fe7
 
 
 
 
 
 
 
c7ca8c3
7990fe7
 
 
 
 
 
88c5423
7990fe7
 
 
b286021
7990fe7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
from PIL import Image
from ultralytics import YOLO
import requests
import json
import logging

logging.basicConfig(level=logging.INFO)

model = YOLO("Covid_Positive_Negative_Classify_v1.pt")

def detect_objects(images):
    results = model(images)
    classes={1:"Negative", 0:"Positive"}
    names=[]
    probss=[]
    for result in results:
        probs = result.probs.top1  
        probss.append(probs)
        
        names.append(classes[probs])
    return names, probss

def create_solutions(image_urls, names, probss, file_ids):
    solutions = []   #list to store all the objects

    for image_url, class_name, prob, file_id in zip(image_urls, names, probss, file_ids):      
        obj = {"image": image_url, "answer": class_name, "qcUserID" : None, "normalfileID": file_id}   
        solutions.append(obj)
        print("image done")
    return solutions

# def send_results_to_api(data, result_url):
#     # Example function to send results to an API
#     headers = {"Content-Type": "application/json"}
#     response = requests.post(result_url, json=data, headers=headers)
#     if response.status_code == 200:
#         return response.json()  # Return any response from the API if needed
#     else:
#         return {"error": f"Failed to send results to API: {response.status_code}"}

def process_images(params):
    try:
        params = json.loads(params)
    except json.JSONDecodeError as e:
        logging.error(f"Invalid JSON input: {e.msg} at line {e.lineno} column {e.colno}")
        return {"error": f"Invalid JSON input: {e.msg} at line {e.lineno} column {e.colno}"}
    
    image_urls = params.get("urls", [])
    # normalFileId = 0
    if not params.get("normalfileID",[]):
        file_ids = [None]*len(image_urls)
    else:
        file_ids = params.get("normalfileID",[])
    # api = params.get("api", "")
    # job_id = params.get("job_id", "")

    if not image_urls:
        logging.error("Missing required parameters: 'urls'")
        return {"error": "Missing required parameters: 'urls'"}

    try:
        print(f"operating on : {image_urls}")
        images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls]  # images from URLs
    except Exception as e:
        logging.error(f"Error loading images: {e}")
        return {"error": f"Error loading images: {str(e)}"}
        
    names, probss = detect_objects(images)  # Perform object detection
    solutions = create_solutions(image_urls, names, probss, file_ids)  # Create solutions with image URLs and bounding boxes

    # result_url = f"{api}/{job_id}"
    # send_results_to_api(solutions, result_url)
    print("Solution sent")

    return json.dumps({"solutions": solutions})

inputt = gr.Textbox(label="Parameters (JSON format) Eg. img_url:['','']")
outputs = gr.JSON()

application = gr.Interface(fn=process_images, inputs=inputt, outputs=outputs, title="Covid +ve -ve Classification with API Integration")
application.launch()