import json import whisper import requests large_multi = whisper.load_model("large-v3") # def send_results_to_api(data, result_url): # headers = {"Content-Type":"application/json"} # response = requests.post(result_url, json= data, headers=headers) # if response.status_code == 200: # return response.json() # else: # return {"error": f"Failed to send results to API: {response.status_code}"} def process_audio(params): solutions=[] params = json.loads(params) audio_files = params.get("urls",[]) if not params.get("normalfileID",[]): file_ids = [None]*len(audio_files) else: file_ids = params.get("normalfileID",[]) # api = params.get("api", "") # job_id = params.get("job_id", "") for audio, file_id in zip(audio_files,file_ids): result_multi = large_multi.transcribe(audio) text = result_multi['text'] answer_dict = {} answer_dict.update({'url':audio, 'answer':text, "qcUser": None, "normalfileID": file_id}) solutions.append(answer_dict) # result_url = f"{api}/{job_id}" # send_results_to_api(solutions, result_url) return json.dumps({"solutions":solutions}) import gradio as gr inputt = gr.Textbox(label = "Parameter in json format Eg. {'audio_files':['file1.mp3','file2.wav'], 'api':'https://api.example.com', 'job_id':'1001'}") outputt = gr.JSON() application = gr.Interface(fn=process_audio, inputs = inputt, outputs= outputt, title="Multilingual (Hindi/English) Audio transcription with API Intergration") application.launch()