import gradio as gr from PIL import Image from ultralytics import YOLO import requests import json import logging logging.basicConfig(level=logging.INFO) model = YOLO("Multiple_Object_BB_Detection_v1.pt") def detect_objects(images): results = model(images) all_bboxes = [] all_bboxes2 = [] for result in results: boxes = result.boxes.xywhn.tolist() boxes2 = result.boxes.xywh.tolist() all_bboxes.append(boxes) all_bboxes2.append(boxes2) return all_bboxes, all_bboxes2 def create_solutions(image_urls, all_bboxes, all_bboxes2): solutions = [] img_id =1 box_id =1 cat_id =1 for image_url, bbox, bbox2, file_id in zip(image_urls, all_bboxes, all_bboxes2, file_ids): # Loop through each image ID and its corresponding prediction for subbox, subbox2 in zip(bbox, bbox2): w = subbox2[2] h = subbox2[3] area = w*h seg=[[]] ans = {"segmentation":seg, "area":area, 'iscrowd':0, "image_id":img_id, "bbox": subbox, "category_id":cat_id, "id":box_id } ansx=[] ansx.append(ans) box_id +=1 solutions.append({"url": image_url,'answer':ansx, "qcUser" : None, "normalfileID": file_id }) img_id +=1 return solutions # def send_results_to_api(data, result_url): # # Example function to send results to an API # headers = {"Content-Type": "application/json"} # response = requests.post(result_url, json=data, headers=headers) # if response.status_code == 200: # return response.json() # Return any response from the API if needed # else: # return {"error": f"Failed to send results to API: {response.status_code}"} def process_images(params): try: params = json.loads(params) except json.JSONDecodeError as e: logging.error(f"Invalid JSON input: {e.msg} at line {e.lineno} column {e.colno}") return {"error":f"Invalid JSON input: {e.msg} at line {e.lineno} column {e.colno}"} image_urls = params.get("urls", []) if not params.get("normalfileID",[]): file_ids = [None]*len(image_urls) else: file_ids = params.get("normalfileID",[]) # api = params.get("api", "") # job_id = params.get("job_id", "") if not image_urls: logging.error("Missing required parameters: 'urls'") return {"error": "Missing required parameters: 'urls'"} try: images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls] # images from URLs except Exception as e: logging.error(f"Error loading images: {e}") return {"error": f"Error loading images: {str(e)}"} all_bboxes, all_bboxes2 = detect_objects(images) # Perform object detection solutions = create_solutions(image_urls, all_bboxes, all_bboxes2, file_ids) # Create solutions with image URLs and bounding boxes # result_url = f"{api}/{job_id}" # send_results_to_api(solutions, result_url) return json.dumps({"solutions": solutions}) inputt = gr.Textbox(label="Parameters (JSON format)") outputs = gr.JSON() application = gr.Interface(fn=process_images, inputs=inputt, outputs=outputs, title="Multiple Object Detection with API Integration") application.launch()