Spaces:
No application file
No application file
Add application file
Browse files- app/app.py +354 -0
app/app.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
|
4 |
+
os.chdir("../")
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
from pathlib import Path
|
9 |
+
from matplotlib import pyplot as plt
|
10 |
+
import torch
|
11 |
+
import tempfile
|
12 |
+
# from omegaconf import OmegaConf
|
13 |
+
# from sam_segment import predict_masks_with_sam
|
14 |
+
from stable_diffusion_inpaint import replace_img_with_sd
|
15 |
+
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
|
16 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
17 |
+
show_mask, show_points
|
18 |
+
from PIL import Image
|
19 |
+
from segment_anything import SamPredictor, sam_model_registry
|
20 |
+
import argparse
|
21 |
+
|
22 |
+
def setup_args(parser):
|
23 |
+
parser.add_argument(
|
24 |
+
"--lama_config", type=str,
|
25 |
+
default="./lama/configs/prediction/default.yaml",
|
26 |
+
help="The path to the config file of lama model. "
|
27 |
+
"Default: the config of big-lama",
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--lama_ckpt", type=str,
|
31 |
+
default="pretrained_models/big-lama",
|
32 |
+
help="The path to the lama checkpoint.",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--sam_ckpt", type=str,
|
36 |
+
default="./pretrained_models/sam_vit_h_4b8939.pth",
|
37 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
38 |
+
)
|
39 |
+
def mkstemp(suffix, dir=None):
|
40 |
+
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
|
41 |
+
os.close(fd)
|
42 |
+
return Path(path)
|
43 |
+
|
44 |
+
|
45 |
+
def get_sam_feat(img):
|
46 |
+
model['sam'].set_image(img)
|
47 |
+
features = model['sam'].features
|
48 |
+
orig_h = model['sam'].orig_h
|
49 |
+
orig_w = model['sam'].orig_w
|
50 |
+
input_h = model['sam'].input_h
|
51 |
+
input_w = model['sam'].input_w
|
52 |
+
model['sam'].reset_image()
|
53 |
+
return features, orig_h, orig_w, input_h, input_w
|
54 |
+
|
55 |
+
def get_replace_img_with_sd(image, mask, image_resolution, text_prompt):
|
56 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
57 |
+
if len(mask.shape)==3:
|
58 |
+
mask = mask[:,:,0]
|
59 |
+
np_image = np.array(image, dtype=np.uint8)
|
60 |
+
H, W, C = np_image.shape
|
61 |
+
np_image = HWC3(np_image)
|
62 |
+
np_image = resize_image(np_image, image_resolution)
|
63 |
+
|
64 |
+
img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device)
|
65 |
+
img_replaced = img_replaced.astype(np.uint8)
|
66 |
+
return img_replaced
|
67 |
+
|
68 |
+
def HWC3(x):
|
69 |
+
assert x.dtype == np.uint8
|
70 |
+
if x.ndim == 2:
|
71 |
+
x = x[:, :, None]
|
72 |
+
assert x.ndim == 3
|
73 |
+
H, W, C = x.shape
|
74 |
+
assert C == 1 or C == 3 or C == 4
|
75 |
+
if C == 3:
|
76 |
+
return x
|
77 |
+
if C == 1:
|
78 |
+
return np.concatenate([x, x, x], axis=2)
|
79 |
+
if C == 4:
|
80 |
+
color = x[:, :, 0:3].astype(np.float32)
|
81 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
82 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
83 |
+
y = y.clip(0, 255).astype(np.uint8)
|
84 |
+
return y
|
85 |
+
|
86 |
+
def resize_image(input_image, resolution):
|
87 |
+
H, W, C = input_image.shape
|
88 |
+
H = float(H)
|
89 |
+
W = float(W)
|
90 |
+
k = float(resolution) / min(H, W)
|
91 |
+
H *= k
|
92 |
+
W *= k
|
93 |
+
H = int(np.round(H / 64.0)) * 64
|
94 |
+
W = int(np.round(W / 64.0)) * 64
|
95 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
96 |
+
return img
|
97 |
+
|
98 |
+
def resize_points(clicked_points, original_shape, resolution):
|
99 |
+
original_height, original_width, _ = original_shape
|
100 |
+
original_height = float(original_height)
|
101 |
+
original_width = float(original_width)
|
102 |
+
|
103 |
+
scale_factor = float(resolution) / min(original_height, original_width)
|
104 |
+
resized_points = []
|
105 |
+
|
106 |
+
for point in clicked_points:
|
107 |
+
x, y, lab = point
|
108 |
+
resized_x = int(round(x * scale_factor))
|
109 |
+
resized_y = int(round(y * scale_factor))
|
110 |
+
resized_point = (resized_x, resized_y, lab)
|
111 |
+
resized_points.append(resized_point)
|
112 |
+
|
113 |
+
return resized_points
|
114 |
+
|
115 |
+
def get_click_mask(clicked_points, features, orig_h, orig_w, input_h, input_w):
|
116 |
+
# model['sam'].set_image(image)
|
117 |
+
model['sam'].is_image_set = True
|
118 |
+
model['sam'].features = features
|
119 |
+
model['sam'].orig_h = orig_h
|
120 |
+
model['sam'].orig_w = orig_w
|
121 |
+
model['sam'].input_h = input_h
|
122 |
+
model['sam'].input_w = input_w
|
123 |
+
|
124 |
+
# Separate the points and labels
|
125 |
+
points, labels = zip(*[(point[:2], point[2])
|
126 |
+
for point in clicked_points])
|
127 |
+
|
128 |
+
# Convert the points and labels to numpy arrays
|
129 |
+
input_point = np.array(points)
|
130 |
+
input_label = np.array(labels)
|
131 |
+
|
132 |
+
masks, _, _ = model['sam'].predict(
|
133 |
+
point_coords=input_point,
|
134 |
+
point_labels=input_label,
|
135 |
+
multimask_output=False,
|
136 |
+
)
|
137 |
+
if dilate_kernel_size is not None:
|
138 |
+
masks = [dilate_mask(mask, dilate_kernel_size.value) for mask in masks]
|
139 |
+
else:
|
140 |
+
masks = [mask for mask in masks]
|
141 |
+
|
142 |
+
return masks
|
143 |
+
|
144 |
+
def process_image_click(original_image, point_prompt, clicked_points, image_resolution, features, orig_h, orig_w, input_h, input_w, evt: gr.SelectData):
|
145 |
+
clicked_coords = evt.index
|
146 |
+
x, y = clicked_coords
|
147 |
+
label = point_prompt
|
148 |
+
lab = 1 if label == "Foreground Point" else 0
|
149 |
+
clicked_points.append((x, y, lab))
|
150 |
+
|
151 |
+
input_image = np.array(original_image, dtype=np.uint8)
|
152 |
+
H, W, C = input_image.shape
|
153 |
+
input_image = HWC3(input_image)
|
154 |
+
img = resize_image(input_image, image_resolution)
|
155 |
+
|
156 |
+
# Update the clicked_points
|
157 |
+
resized_points = resize_points(
|
158 |
+
clicked_points, input_image.shape, image_resolution
|
159 |
+
)
|
160 |
+
mask_click_np = get_click_mask(resized_points, features, orig_h, orig_w, input_h, input_w)
|
161 |
+
|
162 |
+
# Convert mask_click_np to HWC format
|
163 |
+
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
|
164 |
+
|
165 |
+
mask_image = HWC3(mask_click_np.astype(np.uint8))
|
166 |
+
mask_image = cv2.resize(
|
167 |
+
mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
|
168 |
+
# mask_image = Image.fromarray(mask_image_tmp)
|
169 |
+
|
170 |
+
# Draw circles for all clicked points
|
171 |
+
edited_image = input_image
|
172 |
+
for x, y, lab in clicked_points:
|
173 |
+
# Set the circle color based on the label
|
174 |
+
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
|
175 |
+
|
176 |
+
# Draw the circle
|
177 |
+
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
|
178 |
+
|
179 |
+
# Set the opacity for the mask_image and edited_image
|
180 |
+
opacity_mask = 0.75
|
181 |
+
opacity_edited = 1.0
|
182 |
+
|
183 |
+
# Combine the edited_image and the mask_image using cv2.addWeighted()
|
184 |
+
overlay_image = cv2.addWeighted(
|
185 |
+
edited_image,
|
186 |
+
opacity_edited,
|
187 |
+
(mask_image *
|
188 |
+
np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
|
189 |
+
opacity_mask,
|
190 |
+
0,
|
191 |
+
)
|
192 |
+
|
193 |
+
return (
|
194 |
+
overlay_image,
|
195 |
+
# Image.fromarray(overlay_image),
|
196 |
+
clicked_points,
|
197 |
+
# Image.fromarray(mask_image),
|
198 |
+
mask_image
|
199 |
+
)
|
200 |
+
|
201 |
+
def image_upload(image, image_resolution):
|
202 |
+
if image is not None:
|
203 |
+
np_image = np.array(image, dtype=np.uint8)
|
204 |
+
H, W, C = np_image.shape
|
205 |
+
np_image = HWC3(np_image)
|
206 |
+
np_image = resize_image(np_image, image_resolution)
|
207 |
+
features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image)
|
208 |
+
return image, features, orig_h, orig_w, input_h, input_w
|
209 |
+
else:
|
210 |
+
return None, None, None, None, None, None
|
211 |
+
|
212 |
+
def get_inpainted_img(image, mask, image_resolution):
|
213 |
+
lama_config = args.lama_config
|
214 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
215 |
+
if len(mask.shape)==3:
|
216 |
+
mask = mask[:,:,0]
|
217 |
+
img_inpainted = inpaint_img_with_builded_lama(
|
218 |
+
model['lama'], image, mask, lama_config, device=device)
|
219 |
+
return img_inpainted
|
220 |
+
|
221 |
+
|
222 |
+
# get args
|
223 |
+
parser = argparse.ArgumentParser()
|
224 |
+
setup_args(parser)
|
225 |
+
args = parser.parse_args(sys.argv[1:])
|
226 |
+
# build models
|
227 |
+
model = {}
|
228 |
+
# build the sam model
|
229 |
+
model_type="vit_h"
|
230 |
+
ckpt_p=args.sam_ckpt
|
231 |
+
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
232 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
233 |
+
model_sam.to(device=device)
|
234 |
+
model['sam'] = SamPredictor(model_sam)
|
235 |
+
|
236 |
+
# build the lama model
|
237 |
+
lama_config = args.lama_config
|
238 |
+
lama_ckpt = args.lama_ckpt
|
239 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
240 |
+
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
|
241 |
+
|
242 |
+
button_size = (100,50)
|
243 |
+
with gr.Blocks() as demo:
|
244 |
+
clicked_points = gr.State([])
|
245 |
+
origin_image = gr.State(None)
|
246 |
+
click_mask = gr.State(None)
|
247 |
+
features = gr.State(None)
|
248 |
+
orig_h = gr.State(None)
|
249 |
+
orig_w = gr.State(None)
|
250 |
+
input_h = gr.State(None)
|
251 |
+
input_w = gr.State(None)
|
252 |
+
|
253 |
+
with gr.Row():
|
254 |
+
with gr.Column(variant="panel"):
|
255 |
+
with gr.Row():
|
256 |
+
gr.Markdown("## Input Image")
|
257 |
+
with gr.Row():
|
258 |
+
# img = gr.Image(label="Input Image")
|
259 |
+
source_image_click = gr.Image(
|
260 |
+
type="numpy",
|
261 |
+
height=300,
|
262 |
+
interactive=True,
|
263 |
+
label="Image: Upload an image and click the region you want to edit.",
|
264 |
+
)
|
265 |
+
with gr.Row():
|
266 |
+
point_prompt = gr.Radio(
|
267 |
+
choices=["Foreground Point",
|
268 |
+
"Background Point"],
|
269 |
+
value="Foreground Point",
|
270 |
+
label="Point Label",
|
271 |
+
interactive=True,
|
272 |
+
show_label=False,
|
273 |
+
)
|
274 |
+
image_resolution = gr.Slider(
|
275 |
+
label="Image Resolution",
|
276 |
+
minimum=256,
|
277 |
+
maximum=768,
|
278 |
+
value=512,
|
279 |
+
step=64,
|
280 |
+
)
|
281 |
+
dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=30, step=1, value=3)
|
282 |
+
with gr.Column(variant="panel"):
|
283 |
+
with gr.Row():
|
284 |
+
gr.Markdown("## Control Panel")
|
285 |
+
text_prompt = gr.Textbox(label="Text Prompt")
|
286 |
+
lama = gr.Button("Inpaint Image", variant="primary")
|
287 |
+
replace_sd = gr.Button("Replace Anything with SD", variant="primary")
|
288 |
+
clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary")
|
289 |
+
|
290 |
+
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
|
291 |
+
with gr.Row(variant="panel"):
|
292 |
+
with gr.Column():
|
293 |
+
with gr.Row():
|
294 |
+
gr.Markdown("## Mask")
|
295 |
+
with gr.Row():
|
296 |
+
click_mask = gr.Image(type="numpy", label="Click Mask")
|
297 |
+
with gr.Column():
|
298 |
+
with gr.Row():
|
299 |
+
gr.Markdown("## Image Removed with Mask")
|
300 |
+
with gr.Row():
|
301 |
+
img_rm_with_mask = gr.Image(
|
302 |
+
type="numpy", label="Image Removed with Mask")
|
303 |
+
with gr.Column():
|
304 |
+
with gr.Row():
|
305 |
+
gr.Markdown("## Replace Anything with Mask")
|
306 |
+
with gr.Row():
|
307 |
+
img_replace_with_mask = gr.Image(
|
308 |
+
type="numpy", label="Image Replace Anything with Mask")
|
309 |
+
|
310 |
+
source_image_click.upload(
|
311 |
+
image_upload,
|
312 |
+
inputs=[source_image_click, image_resolution],
|
313 |
+
outputs=[origin_image, features, orig_h, orig_w, input_h, input_w],
|
314 |
+
)
|
315 |
+
source_image_click.select(
|
316 |
+
process_image_click,
|
317 |
+
inputs=[origin_image, point_prompt,
|
318 |
+
clicked_points, image_resolution,
|
319 |
+
features, orig_h, orig_w, input_h, input_w],
|
320 |
+
outputs=[source_image_click, clicked_points, click_mask],
|
321 |
+
show_progress=True,
|
322 |
+
queue=True,
|
323 |
+
)
|
324 |
+
|
325 |
+
# sam_mask.click(
|
326 |
+
# get_masked_img,
|
327 |
+
# [origin_image, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size],
|
328 |
+
# [img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
|
329 |
+
# )
|
330 |
+
|
331 |
+
lama.click(
|
332 |
+
get_inpainted_img,
|
333 |
+
[origin_image, click_mask, image_resolution],
|
334 |
+
[img_rm_with_mask]
|
335 |
+
)
|
336 |
+
|
337 |
+
replace_sd.click(
|
338 |
+
get_replace_img_with_sd,
|
339 |
+
[origin_image, click_mask, image_resolution, text_prompt],
|
340 |
+
[img_replace_with_mask]
|
341 |
+
)
|
342 |
+
|
343 |
+
|
344 |
+
def reset(*args):
|
345 |
+
return [None for _ in args]
|
346 |
+
|
347 |
+
clear_button_image.click(
|
348 |
+
reset,
|
349 |
+
[origin_image, features, click_mask, img_rm_with_mask, img_replace_with_mask],
|
350 |
+
[origin_image, features, click_mask, img_rm_with_mask, img_replace_with_mask]
|
351 |
+
)
|
352 |
+
|
353 |
+
if __name__ == "__main__":
|
354 |
+
demo.queue(api_open=False).launch(server_name='0.0.0.0', share=False, debug=True)
|