File size: 2,683 Bytes
04b09ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# saves the openwebtext dataset to a binary file for training. following was helpful:
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py

import os
from tqdm import tqdm
import numpy as np
import tiktoken
from datasets import load_dataset # huggingface datasets

# number of workers in .map() call
# good number to use is ~order number of cpu cores // 2
num_proc = 8

# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
dataset = load_dataset("openwebtext")

# owt by default only contains the 'train' split, so create a test split
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val

# this results in:
# >>> split_dataset
# DatasetDict({
#     train: Dataset({
#         features: ['text'],
#         num_rows: 8009762
#     })
#     val: Dataset({
#         features: ['text'],
#         num_rows: 4007
#     })
# })

# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
enc = tiktoken.get_encoding("gpt2")
def process(example):
    ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
    ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
    # note: I think eot should be prepended not appended... hmm. it's called "eot" though...
    out = {'ids': ids, 'len': len(ids)}
    return out

# tokenize the dataset
tokenized = split_dataset.map(
    process,
    remove_columns=['text'],
    desc="tokenizing the splits",
    num_proc=num_proc,
)

# concatenate all the ids in each dataset into one large file we can use for training
for split, dset in tokenized.items():
    arr_len = np.sum(dset['len'])
    filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
    dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
    arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
    total_batches = 1024

    idx = 0
    for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
        # Batch together samples for faster write
        batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
        arr_batch = np.concatenate(batch['ids'])
        # Write into mmap
        arr[idx : idx + len(arr_batch)] = arr_batch
        idx += len(arr_batch)
    arr.flush()

# train.bin is ~17GB, val.bin ~8.5MB
# train has ~9B tokens (9,035,582,198)
# val has ~4M tokens (4,434,897)

# to read the bin files later, e.g. with numpy:
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')