db
commited on
Commit
·
2494b0a
1
Parent(s):
da674fb
init
Browse files- .idea/workspace.xml +14 -1
- app.py +74 -66
.idea/workspace.xml
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
<component name="ChangeListManager">
|
7 |
<list default="true" id="6f3a79aa-e3bd-440d-b0d9-38be2ab06fa3" name="Changes" comment="init">
|
8 |
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
|
|
9 |
</list>
|
10 |
<option name="SHOW_DIALOG" value="false" />
|
11 |
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
@@ -28,6 +29,11 @@
|
|
28 |
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
|
29 |
<property name="last_opened_file_path" value="$PROJECT_DIR$" />
|
30 |
</component>
|
|
|
|
|
|
|
|
|
|
|
31 |
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
32 |
<component name="TaskManager">
|
33 |
<task active="true" id="Default" summary="Default task">
|
@@ -135,7 +141,14 @@
|
|
135 |
<option name="project" value="LOCAL" />
|
136 |
<updated>1683459236060</updated>
|
137 |
</task>
|
138 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
<servers />
|
140 |
</component>
|
141 |
<component name="Vcs.Log.Tabs.Properties">
|
|
|
6 |
<component name="ChangeListManager">
|
7 |
<list default="true" id="6f3a79aa-e3bd-440d-b0d9-38be2ab06fa3" name="Changes" comment="init">
|
8 |
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
9 |
+
<change beforePath="$PROJECT_DIR$/app.py" beforeDir="false" afterPath="$PROJECT_DIR$/app.py" afterDir="false" />
|
10 |
</list>
|
11 |
<option name="SHOW_DIALOG" value="false" />
|
12 |
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
|
|
29 |
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
|
30 |
<property name="last_opened_file_path" value="$PROJECT_DIR$" />
|
31 |
</component>
|
32 |
+
<component name="RecentsManager">
|
33 |
+
<key name="CopyFile.RECENT_KEYS">
|
34 |
+
<recent name="$PROJECT_DIR$" />
|
35 |
+
</key>
|
36 |
+
</component>
|
37 |
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
38 |
<component name="TaskManager">
|
39 |
<task active="true" id="Default" summary="Default task">
|
|
|
141 |
<option name="project" value="LOCAL" />
|
142 |
<updated>1683459236060</updated>
|
143 |
</task>
|
144 |
+
<task id="LOCAL-00015" summary="init">
|
145 |
+
<created>1683459694836</created>
|
146 |
+
<option name="number" value="00015" />
|
147 |
+
<option name="presentableId" value="LOCAL-00015" />
|
148 |
+
<option name="project" value="LOCAL" />
|
149 |
+
<updated>1683459694836</updated>
|
150 |
+
</task>
|
151 |
+
<option name="localTasksCounter" value="16" />
|
152 |
<servers />
|
153 |
</component>
|
154 |
<component name="Vcs.Log.Tabs.Properties">
|
app.py
CHANGED
@@ -1,72 +1,80 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
Will save train.bin, val.bin containing the ids, and meta.pkl containing the
|
5 |
-
encoder and decoder and some other related info.
|
6 |
-
"""
|
7 |
import os
|
8 |
-
import
|
9 |
-
import requests
|
10 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# export to bin files
|
49 |
-
train_ids = np.array(train_ids, dtype=np.uint16)
|
50 |
-
val_ids = np.array(val_ids, dtype=np.uint16)
|
51 |
-
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
|
52 |
-
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
|
53 |
-
|
54 |
-
# save the meta information as well, to help us encode/decode later
|
55 |
-
meta = {
|
56 |
-
'vocab_size': vocab_size,
|
57 |
-
'itos': itos,
|
58 |
-
'stoi': stoi,
|
59 |
-
}
|
60 |
-
with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
|
61 |
-
pickle.dump(meta, f)
|
62 |
-
|
63 |
-
# length of dataset in characters: 1115394
|
64 |
-
# all the unique characters:
|
65 |
-
# !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
|
66 |
-
# vocab size: 65
|
67 |
-
# train has 1003854 tokens
|
68 |
-
# val has 111540 tokens
|
69 |
-
|
70 |
|
71 |
"""
|
72 |
This training script can be run both on a single gpu in debug mode,
|
|
|
1 |
+
# saves the openwebtext dataset to a binary file for training. following was helpful:
|
2 |
+
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
|
3 |
+
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
from tqdm import tqdm
|
|
|
6 |
import numpy as np
|
7 |
+
import tiktoken
|
8 |
+
from datasets import load_dataset # huggingface datasets
|
9 |
+
|
10 |
+
# number of workers in .map() call
|
11 |
+
# good number to use is ~order number of cpu cores // 2
|
12 |
+
num_proc = 8
|
13 |
+
|
14 |
+
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
15 |
+
dataset = load_dataset("openwebtext")
|
16 |
+
|
17 |
+
# owt by default only contains the 'train' split, so create a test split
|
18 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
19 |
+
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
20 |
+
|
21 |
+
# this results in:
|
22 |
+
# >>> split_dataset
|
23 |
+
# DatasetDict({
|
24 |
+
# train: Dataset({
|
25 |
+
# features: ['text'],
|
26 |
+
# num_rows: 8009762
|
27 |
+
# })
|
28 |
+
# val: Dataset({
|
29 |
+
# features: ['text'],
|
30 |
+
# num_rows: 4007
|
31 |
+
# })
|
32 |
+
# })
|
33 |
+
|
34 |
+
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
35 |
+
enc = tiktoken.get_encoding("gpt2")
|
36 |
+
def process(example):
|
37 |
+
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
38 |
+
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
39 |
+
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
40 |
+
out = {'ids': ids, 'len': len(ids)}
|
41 |
+
return out
|
42 |
|
43 |
+
# tokenize the dataset
|
44 |
+
tokenized = split_dataset.map(
|
45 |
+
process,
|
46 |
+
remove_columns=['text'],
|
47 |
+
desc="tokenizing the splits",
|
48 |
+
num_proc=num_proc,
|
49 |
+
)
|
50 |
+
|
51 |
+
# concatenate all the ids in each dataset into one large file we can use for training
|
52 |
+
for split, dset in tokenized.items():
|
53 |
+
arr_len = np.sum(dset['len'])
|
54 |
+
filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
|
55 |
+
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
56 |
+
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
|
57 |
+
total_batches = 1024
|
58 |
+
|
59 |
+
idx = 0
|
60 |
+
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
|
61 |
+
# Batch together samples for faster write
|
62 |
+
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
|
63 |
+
arr_batch = np.concatenate(batch['ids'])
|
64 |
+
# Write into mmap
|
65 |
+
arr[idx : idx + len(arr_batch)] = arr_batch
|
66 |
+
idx += len(arr_batch)
|
67 |
+
arr.flush()
|
68 |
+
|
69 |
+
# train.bin is ~17GB, val.bin ~8.5MB
|
70 |
+
# train has ~9B tokens (9,035,582,198)
|
71 |
+
# val has ~4M tokens (4,434,897)
|
72 |
+
|
73 |
+
# to read the bin files later, e.g. with numpy:
|
74 |
+
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|
75 |
+
|
76 |
+
|
77 |
+
##########################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
"""
|
80 |
This training script can be run both on a single gpu in debug mode,
|