db commited on
Commit
60256c5
·
2 Parent(s): ddfb0d7 a809035

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (1) hide show
  1. app.py +58 -167
app.py CHANGED
@@ -1,177 +1,68 @@
1
-
 
 
 
 
 
 
 
 
2
  import numpy as np
3
- import gradio as gr
4
- from bark import SAMPLE_RATE, generate_audio, preload_models
5
- from bark.generation import SUPPORTED_LANGS
6
- from share_btn import community_icon_html, loading_icon_html, share_js
7
 
8
- DEBUG_MODE = False
 
 
 
 
 
9
 
10
- if not DEBUG_MODE:
11
- _ = preload_models()
 
12
 
13
- AVAILABLE_PROMPTS = ["Unconditional", "Announcer"]
14
- PROMPT_LOOKUP = {}
15
- for _, lang in SUPPORTED_LANGS:
16
- for n in range(10):
17
- label = f"Speaker {n} ({lang})"
18
- AVAILABLE_PROMPTS.append(label)
19
- PROMPT_LOOKUP[label] = f"{lang}_speaker_{n}"
20
- PROMPT_LOOKUP["Unconditional"] = None
21
- PROMPT_LOOKUP["Announcer"] = "announcer"
22
 
23
- default_text = "Hello, my name is Suno. And, uh — and I like pizza. [laughs]\nBut I also have other interests such as playing tic tac toe."
 
 
 
 
 
 
24
 
25
- title = "# 🐶 Bark</div>"
 
 
 
26
 
27
- description = """
28
- <div>
29
- <a style="display:inline-block" href='https://github.com/suno-ai/bark'><img src='https://img.shields.io/github/stars/suno-ai/bark?style=social' /></a>
30
- <a style='display:inline-block' href='https://discord.gg/J2B2vsjKuE'><img src='https://dcbadge.vercel.app/api/server/J2B2vsjKuE?compact=true&style=flat' /></a>
31
- <a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/suno/bark?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
32
- </div>
33
- Bark is a universal text-to-audio model created by [Suno](www.suno.ai), with code publicly available [here](https://github.com/suno-ai/bark). \
34
- Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. \
35
- This demo should be used for research purposes only. Commercial use is strictly prohibited. \
36
- The model output is not censored and the authors do not endorse the opinions in the generated content. \
37
- Use at your own risk.
38
- """
39
-
40
- article = """
41
- ## 🌎 Foreign Language
42
- Bark supports various languages out-of-the-box and automatically determines language from input text. \
43
- When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
44
- Try the prompt:
45
- ```
46
- Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
47
- ```
48
- ## 🤭 Non-Speech Sounds
49
- Below is a list of some known non-speech sounds, but we are finding more every day. \
50
- Please let us know if you find patterns that work particularly well on Discord!
51
- * [laughter]
52
- * [laughs]
53
- * [sighs]
54
- * [music]
55
- * [gasps]
56
- * [clears throat]
57
- * — or ... for hesitations
58
- * ♪ for song lyrics
59
- * capitalization for emphasis of a word
60
- * MAN/WOMAN: for bias towards speaker
61
- Try the prompt:
62
- ```
63
- " [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
64
- ```
65
- ## 🎶 Music
66
- Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
67
- Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
68
- Try the prompt:
69
- ```
70
- ♪ In the jungle, the mighty jungle, the lion barks tonight ♪
71
- ```
72
- ## 🧬 Voice Cloning
73
- Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
74
- The model also attempts to preserve music, ambient noise, etc. from input audio. \
75
- However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
76
- ## 👥 Speaker Prompts
77
- You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
78
- Please note that these are not always respected, especially if a conflicting audio history prompt is given.
79
- Try the prompt:
80
- ```
81
- WOMAN: I would like an oatmilk latte please.
82
- MAN: Wow, that's expensive!
83
- ```
84
- ## Details
85
- Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
86
- Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
87
- """
88
 
89
- examples = [
90
- ["Please surprise me and speak in whatever voice you enjoy. Vielen Dank und Gesundheit!",
91
- "Unconditional"], # , 0.7, 0.7],
92
- ["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe.",
93
- "Speaker 1 (en)"], # , 0.7, 0.7],
94
- ["Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.",
95
- "Speaker 0 (es)"], # , 0.7, 0.7],
96
- ]
97
-
98
-
99
- def gen_tts(text, history_prompt): # , temp_semantic, temp_waveform):
100
- history_prompt = PROMPT_LOOKUP[history_prompt]
101
- if DEBUG_MODE:
102
- audio_arr = np.zeros(SAMPLE_RATE)
103
- else:
104
- # , text_temp=temp_semantic, waveform_temp=temp_waveform)
105
- audio_arr = generate_audio(text, history_prompt=history_prompt)
106
- audio_arr = (audio_arr * 32767).astype(np.int16)
107
- return (SAMPLE_RATE, audio_arr)
108
-
109
-
110
- css = """
111
- #share-btn-container {
112
- display: flex;
113
- padding-left: 0.5rem !important;
114
- padding-right: 0.5rem !important;
115
- background-color: #000000;
116
- justify-content: center;
117
- align-items: center;
118
- border-radius: 9999px !important;
119
- width: 13rem;
120
- margin-top: 10px;
121
- margin-left: auto;
122
- flex: unset !important;
123
- }
124
- #share-btn {
125
- all: initial;
126
- color: #ffffff;
127
- font-weight: 600;
128
- cursor: pointer;
129
- font-family: 'IBM Plex Sans', sans-serif;
130
- margin-left: 0.5rem !important;
131
- padding-top: 0.25rem !important;
132
- padding-bottom: 0.25rem !important;
133
- right:0;
134
- }
135
- #share-btn * {
136
- all: unset !important;
137
- }
138
- #share-btn-container div:nth-child(-n+2){
139
- width: auto !important;
140
- min-height: 0px !important;
141
- }
142
- #share-btn-container .wrap {
143
- display: none !important;
144
- }
145
- """
146
- with gr.Blocks(css=css) as block:
147
- gr.Markdown(title)
148
- gr.Markdown(description)
149
- with gr.Row():
150
- with gr.Column():
151
- input_text = gr.Textbox(
152
- label="Input Text", lines=2, value=default_text, elem_id="input_text")
153
- options = gr.Dropdown(
154
- AVAILABLE_PROMPTS, value="Speaker 1 (en)", label="Acoustic Prompt", elem_id="speaker_option")
155
- run_button = gr.Button(text="Generate Audio", type="button")
156
- with gr.Column():
157
- audio_out = gr.Audio(label="Generated Audio",
158
- type="numpy", elem_id="audio_out")
159
- with gr.Row(visible=False) as share_row:
160
- with gr.Group(elem_id="share-btn-container"):
161
- community_icon = gr.HTML(community_icon_html)
162
- loading_icon = gr.HTML(loading_icon_html)
163
- share_button = gr.Button(
164
- "Share to community", elem_id="share-btn")
165
- share_button.click(None, [], [], _js=share_js)
166
- inputs = [input_text, options]
167
- outputs = [audio_out]
168
- gr.Examples(examples=examples, fn=gen_tts, inputs=inputs,
169
- outputs=outputs, cache_examples=True)
170
- gr.Markdown(article)
171
- run_button.click(fn=lambda: gr.update(visible=False), inputs=None, outputs=share_row, queue=False).then(
172
- fn=gen_tts, inputs=inputs, outputs=outputs, queue=True).then(
173
- fn=lambda: gr.update(visible=True), inputs=None, outputs=share_row, queue=False)
174
 
175
- block.queue()
176
- block.launch()
 
 
 
 
 
 
177
 
 
 
 
 
 
 
 
1
+ """
2
+ Prepare the Shakespeare dataset for character-level language modeling.
3
+ So instead of encoding with GPT-2 BPE tokens, we just map characters to ints.
4
+ Will save train.bin, val.bin containing the ids, and meta.pkl containing the
5
+ encoder and decoder and some other related info.
6
+ """
7
+ import os
8
+ import pickle
9
+ import requests
10
  import numpy as np
 
 
 
 
11
 
12
+ # download the tiny shakespeare dataset
13
+ input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt')
14
+ if not os.path.exists(input_file_path):
15
+ data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
16
+ with open(input_file_path, 'w') as f:
17
+ f.write(requests.get(data_url).text)
18
 
19
+ with open(input_file_path, 'r') as f:
20
+ data = f.read()
21
+ print(f"length of dataset in characters: {len(data):,}")
22
 
23
+ # get all the unique characters that occur in this text
24
+ chars = sorted(list(set(data)))
25
+ vocab_size = len(chars)
26
+ print("all the unique characters:", ''.join(chars))
27
+ print(f"vocab size: {vocab_size:,}")
 
 
 
 
28
 
29
+ # create a mapping from characters to integers
30
+ stoi = { ch:i for i,ch in enumerate(chars) }
31
+ itos = { i:ch for i,ch in enumerate(chars) }
32
+ def encode(s):
33
+ return [stoi[c] for c in s] # encoder: take a string, output a list of integers
34
+ def decode(l):
35
+ return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
36
 
37
+ # create the train and test splits
38
+ n = len(data)
39
+ train_data = data[:int(n*0.9)]
40
+ val_data = data[int(n*0.9):]
41
 
42
+ # encode both to integers
43
+ train_ids = encode(train_data)
44
+ val_ids = encode(val_data)
45
+ print(f"train has {len(train_ids):,} tokens")
46
+ print(f"val has {len(val_ids):,} tokens")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ # export to bin files
49
+ train_ids = np.array(train_ids, dtype=np.uint16)
50
+ val_ids = np.array(val_ids, dtype=np.uint16)
51
+ train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
52
+ val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ # save the meta information as well, to help us encode/decode later
55
+ meta = {
56
+ 'vocab_size': vocab_size,
57
+ 'itos': itos,
58
+ 'stoi': stoi,
59
+ }
60
+ with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
61
+ pickle.dump(meta, f)
62
 
63
+ # length of dataset in characters: 1115394
64
+ # all the unique characters:
65
+ # !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
66
+ # vocab size: 65
67
+ # train has 1003854 tokens
68
+ # val has 111540 tokens