File size: 4,117 Bytes
a435037
 
 
 
 
 
 
 
 
 
 
 
f5d6164
 
a435037
 
 
 
 
 
 
9a46ff1
 
 
 
 
 
 
 
1530a3e
 
d7d7f68
9a46ff1
 
 
 
 
a435037
 
 
 
 
 
 
f3ef496
 
884246e
 
 
 
 
 
f3ef496
a435037
 
 
 
 
 
 
 
 
 
 
 
 
9a46ff1
f5d6164
 
 
 
 
 
 
 
a435037
 
be1bd59
 
 
 
 
 
 
 
 
 
 
 
a435037
 
 
f5d6164
 
9a46ff1
 
 
f5d6164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1bd59
f5d6164
 
 
 
 
 
 
 
be1bd59
a435037
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from PIL import Image
import streamlit as st
import cv2
import numpy as np
import os
import tensorflow as tf

from IMVIP_Supplementary_Material.scripts import dfutils #methods used for DF-Net

DESCRIPTION = """# DF-Net
The Digital Forensics Network is designed and trained to detect and locate image manipulations. 
More information can be found in this [publication](https://zenodo.org/record/8214996)

#### Select example image or upload your own image:
"""

IMG_SIZE=256

tf.experimental.numpy.experimental_enable_numpy_behavior()
#np.warnings.filterwarnings('error', category=np.VisibleDeprecationWarning) 

# function to load models
#@st.session_state  better for hugging face?
@st.cache_resource
def load_models():
    #load models
    model_path1 = "IMVIP_Supplementary_Material/models/model1/"
    model_path2 = "IMVIP_Supplementary_Material/models/model2/"

    model_M1 = tf.keras.models.load_model("IMVIP_Supplementary_Material/models/model1/")
    model_M2 = tf.keras.models.load_model("IMVIP_Supplementary_Material/models/model2/")
   
    return model_M1, model_M2


model_M1, model_M2 = load_models()


def check_forgery_df(img):
    shape_original = img.shape
    img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
    x = np.expand_dims( img.astype('float32')/255., axis=0 )
    
    pred1 = model_M1.predict(x, verbose=0)
    pred2= model_M2.predict(x, verbose=0)   

#    # Ensure pred1 and pred2 are numpy arrays before proceeding
#    if isinstance(pred1, dict):
#        print("pred1 is dict!")
#        pred1 = pred1[next(iter(pred1))]
#    if isinstance(pred2, dict):
#        pred2 = pred2[next(iter(pred2))]

    pred = np.max([pred1,pred2], axis=0)   
    
    pred = dfutils.create_mask(pred)
    pred = pred.reshape(pred.shape[-3:-1])
    resized_image = cv2.resize(pred, (shape_original[1],shape_original[0]), interpolation=cv2.INTER_LINEAR)

    return resized_image


def evaluate(img):
    pre_t = check_forgery_df(img)
    st.image(pre_t, caption="White area indicates potential image manipulations.")


def start_evaluation(uploaded_file):    

    # Convert the file to an opencv image.
    file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
    opencv_image = cv2.imdecode(file_bytes, 1)
    reversed_image = opencv_image[:, :, ::-1]
    st.image(reversed_image, caption="Input Image")
    evaluate(reversed_image)


def start_evaluation_pil_img(pil_image):
    # Convert the PIL image to a NumPy array
    opencv_image = np.array(pil_image)
    # Convert the image from RGB (PIL format) to BGR (OpenCV format)
    opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR)
    # Reverse the color channels back to RGB for display in Streamlit
    reversed_image = opencv_image[:, :, ::-1]
    
    st.image(reversed_image, caption="Input Image")
    evaluate(reversed_image)


st.markdown(DESCRIPTION)


img_path1 = "example_images/Sp_D_NRD_A_nat0095_art0058_0582"
img_path2 = "example_images/Sp_D_NRN_A_nat0083_arc0080_0445"
#img_path3 = "example_images/Sp_D_NRN_A_ani0088_cha0044_0441"
image_paths = [img_path1+".jpg", img_path2+".jpg"] #, img_path3+".jpg"]
gt_paths = [img_path1+"_gt.png", img_path2+"_gt.png"] #, img_path3+"_gt.png"]
# Display images in a table format
img = None
for idx, image_path in enumerate(image_paths):
    cols = st.columns([2, 2, 2, 2])  # Define column widths
    
    # Place the button in the first column
    if cols[0].button(f"Select Image {idx+1}", key=idx):
        img = Image.open(image_path)
        
    # Place the image in the second column
    with cols[1]:
        st.image(image_path, use_column_width=True, caption="Example Image "+str(idx+1))

    # Place the ground truth in the third column
    with cols[2]:
        st.image(gt_paths[idx], use_column_width=True, caption="Ground Truth")

if img is not None:
    start_evaluation_pil_img(img)

def reset_image_select():
    img = None


uploaded_file= None
uploaded_file = st.file_uploader("Please upload an image", type=["jpeg", "jpg", "png"], on_change=reset_image_select)
if (uploaded_file is not None) and (img is None):
    start_evaluation(uploaded_file)