from PIL import Image import streamlit as st import cv2 import numpy as np import os import tensorflow as tf from IMVIP_Supplementary_Material.scripts import dfutils #methods used for DF-Net DESCRIPTION = """# DF-Net The Digital Forensics Network is designed and trained to detect and locate image manipulations. More information can be found in this [publication](https://zenodo.org/record/8214996) #### Select example image or upload your own image: """ IMG_SIZE=256 tf.experimental.numpy.experimental_enable_numpy_behavior() #np.warnings.filterwarnings('error', category=np.VisibleDeprecationWarning) # function to load models #@st.session_state better for hugging face? @st.cache_resource def load_models(): #load models model_path1 = "IMVIP_Supplementary_Material/models/model1/" model_path2 = "IMVIP_Supplementary_Material/models/model2/" model_M1 = tf.keras.models.load_model("IMVIP_Supplementary_Material/models/model1/") model_M2 = tf.keras.models.load_model("IMVIP_Supplementary_Material/models/model2/") return model_M1, model_M2 model_M1, model_M2 = load_models() def check_forgery_df(img): shape_original = img.shape img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) x = np.expand_dims( img.astype('float32')/255., axis=0 ) pred1 = model_M1.predict(x, verbose=0) pred2= model_M2.predict(x, verbose=0) # # Ensure pred1 and pred2 are numpy arrays before proceeding # if isinstance(pred1, dict): # print("pred1 is dict!") # pred1 = pred1[next(iter(pred1))] # if isinstance(pred2, dict): # pred2 = pred2[next(iter(pred2))] pred = np.max([pred1,pred2], axis=0) pred = dfutils.create_mask(pred) pred = pred.reshape(pred.shape[-3:-1]) resized_image = cv2.resize(pred, (shape_original[1],shape_original[0]), interpolation=cv2.INTER_LINEAR) return resized_image def evaluate(img): pre_t = check_forgery_df(img) st.image(pre_t, caption="White area indicates potential image manipulations.") def start_evaluation(uploaded_file): # Convert the file to an opencv image. file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) opencv_image = cv2.imdecode(file_bytes, 1) reversed_image = opencv_image[:, :, ::-1] st.image(reversed_image, caption="Input Image") evaluate(reversed_image) def start_evaluation_pil_img(pil_image): # Convert the PIL image to a NumPy array opencv_image = np.array(pil_image) # Convert the image from RGB (PIL format) to BGR (OpenCV format) opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR) # Reverse the color channels back to RGB for display in Streamlit reversed_image = opencv_image[:, :, ::-1] st.image(reversed_image, caption="Input Image") evaluate(reversed_image) st.markdown(DESCRIPTION) img_path1 = "example_images/Sp_D_NRD_A_nat0095_art0058_0582" img_path2 = "example_images/Sp_D_NRN_A_nat0083_arc0080_0445" #img_path3 = "example_images/Sp_D_NRN_A_ani0088_cha0044_0441" image_paths = [img_path1+".jpg", img_path2+".jpg"] #, img_path3+".jpg"] gt_paths = [img_path1+"_gt.png", img_path2+"_gt.png"] #, img_path3+"_gt.png"] # Display images in a table format img = None for idx, image_path in enumerate(image_paths): cols = st.columns([2, 2, 2, 2]) # Define column widths # Place the button in the first column if cols[0].button(f"Select Image {idx+1}", key=idx): img = Image.open(image_path) # Place the image in the second column with cols[1]: st.image(image_path, use_column_width=True, caption="Example Image "+str(idx+1)) # Place the ground truth in the third column with cols[2]: st.image(gt_paths[idx], use_column_width=True, caption="Ground Truth") if img is not None: start_evaluation_pil_img(img) def reset_image_select(): img = None uploaded_file= None uploaded_file = st.file_uploader("Please upload an image", type=["jpeg", "jpg", "png"], on_change=reset_image_select) if (uploaded_file is not None) and (img is None): start_evaluation(uploaded_file)