Spaces:
Runtime error
Runtime error
File size: 17,177 Bytes
7f3851d 1fcf971 7f3851d 677f5d3 7f3851d 677f5d3 7f3851d e6ad2e0 7f3851d 531b8e3 e6ad2e0 7f3851d e6ad2e0 7f3851d 1fcf971 531b8e3 7f3851d 1fcf971 7f3851d 1fcf971 7f3851d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
from PIL import Image
import numpy as np
import gradio as gr
import paddlehub as hub
import urllib
import cv2
import re
import os
import requests
from share_btn import community_icon_html, loading_icon_html, share_js
import torch
from spectro import wav_bytes_from_spectrogram_image
from diffusers import StableDiffusionPipeline
import io
from os import path
from pydub import AudioSegment
import moviepy.video.io.ImageSequenceClip
from moviepy.editor import *
import mutagen
from mutagen.mp3 import MP3
img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator")
language_translation_model = hub.Module(name='baidu_translate')
language_recognition_model = hub.Module(name='baidu_language_recognition')
style_list = ['古风', '油画', '水彩', '卡通', '二次元', '浮世绘', '蒸汽波艺术', 'low poly', '像素风格', '概念艺术', '未来主义', '赛博朋克', '写实风格', '洛丽塔风格', '巴洛克风格', '超现实主义', '探索无限']
style_list_EN = ['Chinese Ancient Style', 'Oil painting', 'Watercolor', 'Cartoon', 'Anime', 'Ukiyoe', 'Vaporwave', 'low poly', 'Pixel Style', 'Conceptual Art', 'Futurism', 'Cyberpunk', 'Realistic style', 'Lolita style', 'Baroque style', 'Surrealism', '']
tips = {"en": "Tips: The input text will be translated into Chinese for generation",
"jp": "ヒント: 入力テキストは生成のために中国語に翻訳されます",
"kor": "힌트: 입력 텍스트는 생성을 위해 중국어로 번역됩니다"}
count = 0
model_id2 = "riffusion/riffusion-model-v1"
pipe2 = StableDiffusionPipeline.from_pretrained(model_id2, torch_dtype=torch.float16)
pipe2 = pipe2.to("cuda")
def translate_language_example(text_prompts, style_indx):
return translate_language(text_prompts)
def translate_language(text_prompts):
global count
try:
count += 1
tips_text = None
language_code = language_recognition_model.recognize(text_prompts)
if language_code != 'zh':
text_prompts = language_translation_model.translate(text_prompts, language_code, 'zh')
except Exception as e:
error_text = str(e)
return {status_text:error_text, language_tips_text:gr.update(visible=False)}
if language_code in tips:
tips_text = tips[language_code]
else:
tips_text = tips['en']
if language_code == 'zh':
return {language_tips_text:gr.update(visible=False), translated_language:text_prompts, trigger_component: gr.update(value=count, visible=False)}
else:
return {language_tips_text:gr.update(visible=True, value=tips_text), translated_language:text_prompts, trigger_component: gr.update(value=count, visible=False)}
word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
word_list = word_list_dataset["train"]['text']
def get_result(text_prompts, style_indx):
style = style_list[style_indx]
prompt = text_prompts + "," + style
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image_output = pipe(prompt).images[0]
print("file name: " + image_output.filename)
# Encode your PIL Image as a JPEG without writing to disk
imagefile = "imageoutput.png"
#img_np = np.array(image_output[0])
#img_nparray= cv2.cvtColor(img_np, cv2.COLOR_BGR2RGBA)
#img_blue_correction = Image.fromarray(img_nparray)
#img_blue_correction.save(imagefile, img_blue_correction.format)
image_output[0].save(imagefile, image_output[0].format)
interrogate_prompt = img_to_text(imagefile, fn_index=1)[0]
print(interrogate_prompt)
spec_image, music_output = get_music(interrogate_prompt + ", " + style_list_EN[style_indx])
video_merged = merge_video(music_output, image_output)
return {spec_result:spec_image, video_result:video_merged, status_text:'Success'}
def get_music(prompt):
spec = pipe(prompt).images[0]
print(spec)
wav = wav_bytes_from_spectrogram_image(spec)
with open("output.wav", "wb") as f:
f.write(wav[0].getbuffer())
return spec, 'output.wav'
def merge_video(music, img_list):
#Convert to mp3
#music.export("audio.mp3", format="mp3")
print('wav audio converted to mp3 audio' )
print('now getting duration of this mp3 audio' )
#getting audio clip's duration
audio_length = int(MP3(music).info.length)
print('Audio length is :',audio_length)
file_name = 'video_no_audio.mp4'
fps = 12
slide_time = audio_length
fourcc = cv2.VideoWriter.fourcc(*'MJPG')
out = cv2.VideoWriter(file_name, fourcc, fps, (1024, 1024))
for image in img_list:
cv_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
for _ in range(slide_time * fps):
#cv_img = cv2.resize(np.array(cv_img), (1024, 1024))
out.write(cv_img)
out.release()
#String a list of images into a video and write to memory
print('video clip created successfully from images')
# loading video file
print('Starting video and audio merge')
videoclip = VideoFileClip(file_name) #("/content/gdrive/My Drive/AI/my_video1.mp4")
print('loading video-clip')
# loading audio file
audioclip = AudioFileClip(music) #.subclip(0, 15)
print('loading mp3-format audio')
# adding audio to the video clip
mergedclip = videoclip.set_audio(audioclip)
print('video and audio merged successfully')
#Getting size and frame count of merged video file
print('Getting size and frame count of merged video file')
duration = mergedclip.duration
frame_count = mergedclip.fps
print('duration is:',duration)
print('frame count :', frame_count)
mergedclip.to_videofile('mergedvideo.mp4')
return 'mergedvideo.mp4'
title="文生图生音乐视频 Text to Image to Music to Video"
description="An AI art generation pipeline, which supports text-to-image-to-music task."
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.prompt h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
"""
block = gr.Blocks(css=css)
examples = [
[
'蒙娜丽莎,赛博朋克,宝丽来,33毫米',
'蒸汽波艺术(Vaporwave)'
],
[
'一条由闪电制成的令人敬畏的龙',
'概念艺术(Conceptual Art)'
],
[
'An awesome dragon made of lightning',
'概念艺术(Conceptual Art)'
],
[
'嫦娥在时代广场,戏曲',
'写实风格(Realistic style)'
],
[
'Peking Opera at New York',
'探索无限(Explore infinity)'
],
[
'古风少女',
'水彩(Watercolor)'
],
[
'辐射游戏角色',
'探索无限(Explore infinity)'
],
[
'Fallout game character',
'探索无限(Explore infinity)'
],
[
'Traditional Chinese Painting',
'古风(Ancient Style)'
],
[
'原神游戏截图,pixiv, 二次元绘画作品',
'二次元(Anime)'
],
[
'Genshin Impact Game Screenshot, pixiv, Anime Painting Artworks',
'二次元(Anime)'
],
[
'原神角色设定, 哪吒, pixiv, 二次元绘画',
'二次元(Anime)'
],
[
'Genshin Impact Character Design, Harry Potter, pixiv, Anime Painting',
'二次元(Anime)'
],
[
'巨狼,飘雪,蓝色大片烟雾,毛发细致,烟雾缭绕,高清,3d,cg感,侧面照',
'探索无限(Explore infinity)'
],
[
'汉服少女,中国山水画,青山绿水,溪水长流,古风,科技都市,丹青水墨,中国风',
'赛博朋克(Cyberpunk)'
],
[
'戴着墨镜的赛博朋克女孩肖像,在夕阳下的城市中, 油画风格',
'赛博朋克(Cyberpunk)'
],
[
'Portrait of a cyberpunk girl with sunglasses, in the city sunset, oil painting',
'赛博朋克(Cyberpunk)'
],
[
'暗黑破坏神',
'探索无限(Explore infinity)'
],
[
'火焰,凤凰,少女,未来感,高清,3d,精致面容,cg感,古风,唯美,毛发细致,上半身立绘',
'探索无限(Explore infinity)'
],
[
'浮世绘日本科幻哑光绘画,概念艺术,动漫风格神道寺禅园英雄动作序列,包豪斯',
'探索无限(Explore infinity)'
],
[
'一只猫坐在椅子上,戴着一副墨镜,海盗风格',
'探索无限(Explore infinity)'
],
[
'稲妻で作られた畏敬の念を抱かせる竜、コンセプトアート',
'油画(Oil painting)'
],
[
'번개로 만든 경외스러운 용, 개념 예술',
'油画(Oil painting)'
],
[
'梵高猫头鹰',
'蒸汽波艺术(Vaporwave)'
],
[
'萨尔瓦多·达利描绘古代文明的超现实主义梦幻油画',
'写实风格(Realistic style)'
],
[
'夕阳日落时,阳光落在云层上,海面波涛汹涌,风景,胶片感',
'探索无限(Explore infinity)'
],
[
'Sunset, the sun falls on the clouds, the sea is rough, the scenery is filmy',
'油画(Oil painting)'
],
[
'夕日が沈むと、雲の上に太陽の光が落ち、海面は波が荒く、風景、フィルム感',
'油画(Oil painting)'
],
[
'석양이 질 때 햇빛이 구름 위에 떨어지고, 해수면의 파도가 용솟음치며, 풍경, 필름감',
'油画(Oil painting)'
],
]
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
margin-left: 220px;
justify-content: center;
"
>
</div>
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
justify-content: center;
">
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 15px;">文生图生音乐视频</h1>
</div>
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
justify-content: center;
">
<h1 style="font-weight: 900; margin-bottom: 7px;">Text to Image to Music to Video</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Powered by <a href="https://huggingface.co/spaces/PaddlePaddle/ERNIE-ViLG" target="_blank">ERNIE-ViLG 2.0</a>, <a href="https://huggingface.co/spaces/Mubert/Text-to-Music" target="_blank">Mubert AI</a>, <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a> and fffiloni's <a href="https://huggingface.co/spaces/fffiloni/img-to-music" target="_blank">Image to Music</a> projects
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt, multiple languages are supported now.",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
language_tips_text = gr.Textbox(label="language tips", show_label=False, visible=False, max_lines=1)
styles = gr.Dropdown(label="风格(style)", choices=['古风(Ancient Style)', '油画(Oil painting)', '水彩(Watercolor)',
'卡通(Cartoon)', '二次元(Anime)', '浮世绘(Ukiyoe)', '蒸汽波艺术(Vaporwave)', 'low poly',
'像素风格(Pixel Style)', '概念艺术(Conceptual Art)', '未来主义(Futurism)', '赛博朋克(Cyberpunk)', '写实风格(Realistic style)',
'洛丽塔风格(Lolita style)', '巴洛克风格(Baroque style)', '超现实主义(Surrealism)', '探索无限(Explore infinity)'], value='探索无限(Explore infinity)', type="index")
status_text = gr.Textbox(
label="处理状态(Process status)",
show_label=True,
max_lines=1,
interactive=False
)
spec_result = gr.Image()
video_result = gr.Video(type=None, label='Final Merged video')
trigger_component = gr.Textbox(vaule="", visible=False) # This component is used for triggering inference funtion.
translated_language = gr.Textbox(vaule="", visible=False)
ex = gr.Examples(examples=examples, fn=translate_language_example, inputs=[text, styles], outputs=[language_tips_text, status_text, trigger_component, translated_language], cache_examples=False)
ex.dataset.headers = [""]
text.submit(translate_language, inputs=[text], outputs=[language_tips_text, status_text, trigger_component, translated_language])
btn.click(translate_language, inputs=[text], outputs=[language_tips_text, status_text, trigger_component, translated_language])
trigger_component.change(fn=get_result, inputs=[translated_language, styles], outputs=[spec_result, video_result, status_text])
gr.Markdown(
"""
Space by [@DGSpitzer](https://www.youtube.com/channel/UCzzsYBF4qwtMwJaPJZ5SuPg)❤️ [@大谷的游戏创作小屋](https://space.bilibili.com/176003)
[![Twitter Follow](https://img.shields.io/twitter/follow/DGSpitzer?label=%40DGSpitzer&style=social)](https://twitter.com/DGSpitzer)
![visitors](https://visitor-badge.glitch.me/badge?page_id=dgspitzer_txt2img2video)
"""
)
gr.HTML('''
<div class="footer">
<p>Model:<a href="https://github.com/PaddlePaddle/PaddleHub" style="text-decoration: underline;" target="_blank">PaddleHub</a> and <a href="https://wenxin.baidu.com/ernie-vilg" style="text-decoration: underline;" target="_blank">文心大模型</a>
</p>
</div>
''')
block.queue(concurrency_count=128).launch() |