DGSpitzer's picture
Update app.py
bbbf651
raw
history blame
22.7 kB
from PIL import Image
import numpy as np
import gradio as gr
import paddlehub as hub
import urllib
import cv2
import re
import os
import requests
from share_btn import community_icon_html, loading_icon_html, share_js
import torch
from spectro import wav_bytes_from_spectrogram_image
from diffusers import StableDiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler
import io
from os import path
from pydub import AudioSegment
import moviepy.video.io.ImageSequenceClip
from moviepy.editor import *
import mutagen
from mutagen.mp3 import MP3
from mutagen.wave import WAVE
import time
import base64
import gradio as gr
from sentence_transformers import SentenceTransformer
import httpx
import json
from utils import get_tags_for_prompts, get_mubert_tags_embeddings, get_pat
minilm = SentenceTransformer('all-MiniLM-L6-v2')
mubert_tags_embeddings = get_mubert_tags_embeddings(minilm)
def get_track_by_tags(tags, pat, duration, maxit=20, loop=False):
if loop:
mode = "loop"
else:
mode = "track"
r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM',
json={
"method": "RecordTrackTTM",
"params": {
"pat": pat,
"duration": duration,
"tags": tags,
"mode": mode
}
})
rdata = json.loads(r.text)
assert rdata['status'] == 1, rdata['error']['text']
trackurl = rdata['data']['tasks'][0]['download_link']
print('Generating track ', end='')
for i in range(maxit):
r = httpx.get(trackurl)
if r.status_code == 200:
return trackurl
time.sleep(1)
def generate_track_by_prompt(prompt):
try:
pat = get_pat("mail@mail.com")
_, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, [prompt, ])[0]
result = get_track_by_tags(tags, pat, int(30), loop=False)
print(result)
return result
except Exception as e:
return str(e)
img_to_text = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2")
#text_to_music = gr.Interface.load("spaces/fffiloni/text-2-music")
#language_translation_model = hub.Module(name='baidu_translate')
#language_recognition_model = hub.Module(name='baidu_language_recognition')
# style_list = ['古风', '油画', '水彩', '卡通', '二次元', '浮世绘', '蒸汽波艺术', 'low poly', '像素风格', '概念艺术', '未来主义', '赛博朋克', '写实风格', '洛丽塔风格', '巴洛克风格', '超现实主义', '默认']
style_list_EN = ['Chinese Ancient Style', 'Oil painting', 'Watercolor', 'Cartoon', 'Anime', 'Ukiyoe', 'Vaporwave', 'low poly', 'Pixel Style', 'Conceptual Art', 'Futurism', 'Cyberpunk', 'Realistic style', 'Lolita style', 'Baroque style', 'Surrealism', 'Detailed']
tips = {"en": "Tips: The input text will be translated into English for generation",
"jp": "ヒント: 入力テキストは生成のために中国語に翻訳されます",
"kor": "힌트: 입력 텍스트는 생성을 위해 중국어로 번역됩니다"}
count = 0
model_id = "runwayml/stable-diffusion-v1-5"
eulera = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, scheduler=eulera)
pipe = pipe.to("cuda")
model_id2 = "riffusion/riffusion-model-v1"
pipe2 = StableDiffusionPipeline.from_pretrained(model_id2, torch_dtype=torch.float16)
pipe2 = pipe2.to("cuda")
def translate_language_example(text_prompts, style_indx):
return translate_language(text_prompts)
def translate_language(text_prompts):
global count
try:
count += 1
tips_text = None
#language_code = language_recognition_model.recognize(text_prompts)
language_code = 'en'
#if language_code != 'en':
#text_prompts = language_translation_model.translate(text_prompts, language_code, 'en')
except Exception as e:
error_text = str(e)
return {status_text:error_text, language_tips_text:gr.update(visible=False), translated_language:text_prompts, trigger_component: gr.update(value=count, visible=False)}
if language_code in tips:
tips_text = tips[language_code]
else:
tips_text = tips['en']
if language_code == 'en':
return {language_tips_text:gr.update(visible=False), translated_language:text_prompts, trigger_component: gr.update(value=count, visible=False)}
else:
return {language_tips_text:gr.update(visible=True, value=tips_text), translated_language:text_prompts, trigger_component: gr.update(value=count, visible=False)}
def get_result(text_prompts, style_indx, musicAI_indx, duration):
style = style_list_EN[style_indx]
prompt = style + "," + text_prompts
sdresult = pipe(prompt, negative_prompt = "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", num_inference_steps=50, guidance_scale=7, width=576, height=576)
image_output = sdresult.images[0] if not sdresult.nsfw_content_detected[0] else Image.open("nsfw_placeholder.jpg")
print("Generated image with prompt " + prompt)
# Encode your PIL Image as a JPEG without writing to disk
imagefile = "imageoutput.png"
#img_np = np.array(image_output[0])
#img_nparray= cv2.cvtColor(img_np, cv2.COLOR_BGR2RGBA)
#img_blue_correction = Image.fromarray(img_nparray)
#img_blue_correction.save(imagefile, img_blue_correction.format)
image_output.save(imagefile, image_output.format)
interrogate_prompt = prompt
#interrogate_prompt = img_to_text(imagefile, 'fast', 4, fn_index=1)[0]
print(interrogate_prompt)
spec_image, music_output = get_music(interrogate_prompt + ", " + style_list_EN[style_indx], musicAI_indx, duration)
video_merged = merge_video(music_output, image_output)
return {spec_result:spec_image, imgfile_result:image_output, musicfile_result:"audio.wav", video_result:video_merged, status_text:'Success', share_button:gr.update(visible=True), community_icon:gr.update(visible=True), loading_icon:gr.update(visible=True)}
def get_music(prompt, musicAI_indx, duration):
mp3file_name = "audio.mp3"
wavfile_name = "audio.wav"
if musicAI_indx == 0:
if duration == 5:
width_duration=512
else :
width_duration = 512 + ((int(duration)-5) * 128)
spec = pipe2(prompt, height=512, width=width_duration).images[0]
print(spec)
wav = wav_bytes_from_spectrogram_image(spec)
with open(wavfile_name, "wb") as f:
f.write(wav[0].getbuffer())
#Convert to mp3, for video merging function
wavfile = AudioSegment.from_wav(wavfile_name)
wavfile.export(mp3file_name, format="mp3")
return spec, mp3file_name
else:
#result = text_to_music(prompt, fn_index=0)
result = generate_track_by_prompt(prompt)
print(f"""—————
NEW RESULTS
prompt : {prompt}
music : {result}
———————
""")
url = result
data = urllib.request.urlopen(url)
f = open(mp3file_name,'wb')
f.write(data.read())
f.close()
#Convert to wav, for sharing function only supports wav file
mp3file = AudioSegment.from_mp3(mp3file_name)
mp3file.export(wavfile_name, format="wav")
return None, mp3file_name
def merge_video(mp3file_name, image):
print('wav audio converted to mp3 audio' )
print('now getting duration of this mp3 audio' )
#getting audio clip's duration
audio_length = int(MP3(mp3file_name).info.length)
print('Audio length is :',audio_length)
file_name = 'video_no_audio.mp4'
fps = 12
slide_time = audio_length
fourcc = cv2.VideoWriter.fourcc(*'MJPG')
#W, H should be the same as input image
out = cv2.VideoWriter(file_name, fourcc, fps, (576, 576))
# for image in img_list:
# cv_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# for _ in range(slide_time * fps):
# #cv_img = cv2.resize(np.array(cv_img), (1024, 1024))
# out.write(cv_img)
cv_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
for _ in range(slide_time * fps):
#cv_img = cv2.resize(np.array(cv_img),
out.write(cv_img)
out.release()
#String a list of images into a video and write to memory
print('video clip created successfully from images')
# loading video file
print('Starting video and audio merge')
videoclip = VideoFileClip(file_name) #("/content/gdrive/My Drive/AI/my_video1.mp4")
print('loading video-clip')
# loading audio file
audioclip = AudioFileClip(mp3file_name) #.subclip(0, 15)
print('loading mp3-format audio')
# adding audio to the video clip
mergedclip = videoclip.set_audio(audioclip)
print('video and audio merged successfully')
#Getting size and frame count of merged video file
print('Getting size and frame count of merged video file')
duration = mergedclip.duration
frame_count = mergedclip.fps
print('duration is:',duration)
print('frame count :', frame_count)
mergedclip.to_videofile('mergedvideo.mp4')
return 'mergedvideo.mp4'
def change_music_generator(current_choice):
if current_choice == 0:
return gr.update(visible=True)
return gr.update(visible=False)
title="文生图生音乐视频 Text to Image to Music to Video with Riffusion"
description="An AI art generation pipeline, which supports text-to-image-to-music task."
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.prompt h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
block = gr.Blocks(css=css)
examples = [
[
'蒙娜丽莎,赛博朋克,宝丽来,33毫米',
'蒸汽波艺术(Vaporwave)'
],
[
'一条由闪电制成的令人敬畏的龙',
'概念艺术(Conceptual Art)'
],
[
'An awesome dragon made of lightning',
'概念艺术(Conceptual Art)'
],
[
'少女在时代广场,舞蹈',
'写实风格(Realistic style)'
],
[
'Peking Opera at New York',
'默认(Default)'
],
[
'古风少女',
'水彩(Watercolor)'
],
[
'辐射游戏角色',
'默认(Default)'
],
[
'Fallout game character',
'默认(Default)'
],
[
'Traditional Chinese Painting',
'古风(Ancient Style)'
],
[
'原神游戏截图,pixiv, 二次元绘画作品',
'二次元(Anime)'
],
[
'Genshin Impact Game Screenshot, pixiv, Anime Painting Artworks',
'二次元(Anime)'
],
[
'原神角色设定, 哪吒, pixiv, 二次元绘画',
'二次元(Anime)'
],
[
'Genshin Impact Character Design, Harry Potter, pixiv, Anime Painting',
'二次元(Anime)'
],
[
'巨狼,飘雪,蓝色大片烟雾,毛发细致,烟雾缭绕,高清,3d,cg感,侧面照',
'默认(Default)'
],
[
'汉服少女,中国山水画,青山绿水,溪水长流,古风,科技都市,丹青水墨,中国风',
'赛博朋克(Cyberpunk)'
],
[
'戴着墨镜的赛博朋克女孩肖像,在夕阳下的城市中, 油画风格',
'赛博朋克(Cyberpunk)'
],
[
'Portrait of a cyberpunk girl with sunglasses, in the city sunset, oil painting',
'赛博朋克(Cyberpunk)'
],
[
'暗黑破坏神',
'默认(Default)'
],
[
'火焰,凤凰,少女,未来感,高清,3d,精致面容,cg感,古风,唯美,毛发细致,上半身立绘',
'默认(Default)'
],
[
'浮世绘日本科幻哑光绘画,概念艺术,动漫风格神道寺禅园英雄动作序列,包豪斯',
'默认(Default)'
],
[
'一只猫坐在椅子上,戴着一副墨镜,海盗风格',
'默认(Default)'
],
[
'稲妻で作られた畏敬の念を抱かせる竜、コンセプトアート',
'油画(Oil painting)'
],
[
'번개로 만든 경외스러운 용, 개념 예술',
'油画(Oil painting)'
],
[
'梵高猫头鹰',
'蒸汽波艺术(Vaporwave)'
],
[
'萨尔瓦多·达利描绘古代文明的超现实主义梦幻油画',
'写实风格(Realistic style)'
],
[
'夕阳日落时,阳光落在云层上,海面波涛汹涌,风景,胶片感',
'默认(Default)'
],
[
'Sunset, the sun falls on the clouds, the sea is rough, the scenery is filmy',
'油画(Oil painting)'
],
[
'夕日が沈むと、雲の上に太陽の光が落ち、海面は波が荒く、風景、フィルム感',
'油画(Oil painting)'
],
[
'석양이 질 때 햇빛이 구름 위에 떨어지고, 해수면의 파도가 용솟음치며, 풍경, 필름감',
'油画(Oil painting)'
],
]
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
margin-left: 220px;
justify-content: center;
"
>
</div>
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
justify-content: center;
">
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 15px;">文生图生音乐视频</h1>
</div>
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
justify-content: center;
">
<h1 style="font-weight: 900; margin-bottom: 7px;">Text to Image to Music to Video</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Powered by <a href="https://huggingface.co/riffusion/riffusion-model-v1" target="_blank">Riffusion Model V1</a>, <a href="https://huggingface.co/spaces/Mubert/Text-to-Music" target="_blank">Mubert AI</a>, <a href="https://huggingface.co/spaces/runwayml/stable-diffusion-v1-5" target="_blank">Stable Diffusion V1.5</a>, <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a>, fffiloni's <a href="https://huggingface.co/spaces/fffiloni/spectrogram-to-music" target="_blank">Riffusion Text-to-Music</a> and Baidu Language Translation projects
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt, multiple languages are supported now.",
elem_id="input-prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
language_tips_text = gr.Textbox(label="language tips", show_label=False, visible=False, max_lines=1)
styles = gr.Dropdown(label="风格(style)", choices=['古风(Ancient Style)', '油画(Oil painting)', '水彩(Watercolor)',
'卡通(Cartoon)', '二次元(Anime)', '浮世绘(Ukiyoe)', '蒸汽波艺术(Vaporwave)', 'low poly',
'像素风格(Pixel Style)', '概念艺术(Conceptual Art)', '未来主义(Futurism)', '赛博朋克(Cyberpunk)', '写实风格(Realistic style)',
'洛丽塔风格(Lolita style)', '巴洛克风格(Baroque style)', '超现实主义(Surrealism)', '默认(Default)'], value='默认(Default)', type="index")
musicAI = gr.Dropdown(label="音乐生成技术(AI Music Generator)", choices=['Riffusion', 'Mubert AI'], value='Riffusion', type="index")
duration_input = gr.Slider(label="Duration in seconds", minimum=5, maximum=10, step=1, value=5, elem_id="duration-slider", visible=True)
status_text = gr.Textbox(
label="处理状态(Process status)",
show_label=True,
max_lines=1,
interactive=False
)
with gr.Column(elem_id="col-container"):
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
share_button.click(None, [], [], _js=share_js)
video_result = gr.Video(type=None, label='Final Merged video', elem_id="output-video")
imgfile_result = gr.Image(label="Art Cover", elem_id="output-img")
musicfile_result = gr.Audio(type='filepath', label="Generated Music Track", elem_id="output-music")
spec_result = gr.Image(label="Spectrogram Image")
trigger_component = gr.Textbox(vaule="", visible=False) # This component is used for triggering inference funtion.
translated_language = gr.Textbox(vaule="", visible=False)
ex = gr.Examples(examples=examples, fn=translate_language_example, inputs=[text, styles], outputs=[language_tips_text, status_text, trigger_component, translated_language], cache_examples=False)
ex.dataset.headers = [""]
musicAI.change(fn=change_music_generator, inputs=[musicAI], outputs=[duration_input])
text.submit(translate_language, inputs=[text], outputs=[language_tips_text, status_text, trigger_component, translated_language])
btn.click(translate_language, inputs=[text], outputs=[language_tips_text, status_text, trigger_component, translated_language])
trigger_component.change(fn=get_result, inputs=[translated_language, styles, musicAI, duration_input], outputs=[spec_result, imgfile_result, musicfile_result, video_result, status_text, share_button, community_icon, loading_icon])
gr.Markdown(
"""
Space by [@DGSpitzer](https://www.youtube.com/channel/UCzzsYBF4qwtMwJaPJZ5SuPg)❤️ [@大谷的游戏创作小屋](https://space.bilibili.com/176003)
[![Twitter Follow](https://img.shields.io/twitter/follow/DGSpitzer?label=%40DGSpitzer&style=social)](https://twitter.com/DGSpitzer)
![visitors](https://visitor-badge.glitch.me/badge?page_id=dgspitzer_txt2img2video)
"""
)
gr.HTML('''
<div class="footer">
<p>Model:<a href="https://huggingface.co/riffusion/riffusion-model-v1" style="text-decoration: underline;" target="_blank">Riffusion</a>
</p>
</div>
''')
block.queue().launch()