Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,181 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
4 |
from PIL import Image
|
5 |
-
import
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
for cnt in contours:
|
37 |
-
cv2.drawContours(mask, [cnt], -1, (255,255,255), -1)
|
38 |
|
39 |
-
#
|
40 |
-
|
|
|
41 |
|
42 |
return result, mask
|
43 |
|
44 |
-
# Interface
|
45 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
46 |
-
gr.Markdown("
|
|
|
|
|
|
|
47 |
|
48 |
with gr.Row():
|
49 |
with gr.Column():
|
50 |
input_image = gr.Image(label="Imagem Original", type="numpy")
|
51 |
-
|
52 |
-
minimum=
|
53 |
-
maximum=
|
54 |
-
|
55 |
-
|
56 |
-
label="
|
57 |
)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
step=2,
|
62 |
-
value=3,
|
63 |
-
label="Tamanho do Kernel"
|
64 |
)
|
65 |
-
process_btn = gr.Button("Processar Imagem")
|
66 |
|
67 |
with gr.Column():
|
68 |
output_image = gr.Image(label="Imagem Processada")
|
69 |
-
mask_image = gr.Image(label="Máscara
|
|
|
70 |
|
71 |
# Eventos
|
72 |
process_btn.click(
|
73 |
fn=process_image,
|
74 |
-
inputs=[input_image,
|
75 |
outputs=[output_image, mask_image]
|
76 |
)
|
77 |
|
78 |
gr.Markdown("""
|
79 |
-
##
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
4. Visualize o resultado e a máscara detectada
|
86 |
|
87 |
-
##
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
""")
|
92 |
|
93 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
from PIL import Image
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from skimage import restoration
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
|
12 |
+
class WatermarkRemovalNet(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super(WatermarkRemovalNet, self).__init__()
|
15 |
+
# Encoder
|
16 |
+
self.encoder = nn.Sequential(
|
17 |
+
nn.Conv2d(3, 64, 3, padding=1),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.Conv2d(64, 64, 3, padding=1),
|
20 |
+
nn.ReLU(inplace=True),
|
21 |
+
nn.MaxPool2d(2, 2),
|
22 |
+
|
23 |
+
nn.Conv2d(64, 128, 3, padding=1),
|
24 |
+
nn.ReLU(inplace=True),
|
25 |
+
nn.Conv2d(128, 128, 3, padding=1),
|
26 |
+
nn.ReLU(inplace=True),
|
27 |
+
nn.MaxPool2d(2, 2),
|
28 |
+
|
29 |
+
nn.Conv2d(128, 256, 3, padding=1),
|
30 |
+
nn.ReLU(inplace=True),
|
31 |
+
nn.Conv2d(256, 256, 3, padding=1),
|
32 |
+
nn.ReLU(inplace=True),
|
33 |
+
)
|
34 |
+
|
35 |
+
# Decoder
|
36 |
+
self.decoder = nn.Sequential(
|
37 |
+
nn.ConvTranspose2d(256, 128, 2, stride=2),
|
38 |
+
nn.ReLU(inplace=True),
|
39 |
+
nn.Conv2d(128, 128, 3, padding=1),
|
40 |
+
nn.ReLU(inplace=True),
|
41 |
+
|
42 |
+
nn.ConvTranspose2d(128, 64, 2, stride=2),
|
43 |
+
nn.ReLU(inplace=True),
|
44 |
+
nn.Conv2d(64, 64, 3, padding=1),
|
45 |
+
nn.ReLU(inplace=True),
|
46 |
+
|
47 |
+
nn.Conv2d(64, 3, 3, padding=1),
|
48 |
+
nn.Sigmoid()
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = self.encoder(x)
|
53 |
+
x = self.decoder(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
class WatermarkRemover:
|
57 |
+
def __init__(self):
|
58 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
59 |
+
self.model = WatermarkRemovalNet().to(self.device)
|
60 |
+
self.transform = transforms.Compose([
|
61 |
+
transforms.ToTensor(),
|
62 |
+
])
|
63 |
+
|
64 |
+
def preprocess_image(self, image):
|
65 |
+
if isinstance(image, np.ndarray):
|
66 |
+
image = Image.fromarray(image)
|
67 |
+
return self.transform(image).unsqueeze(0)
|
68 |
|
69 |
+
def detect_watermark(self, img):
|
70 |
+
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
71 |
+
denoised = cv2.fastNlMeansDenoising(gray)
|
72 |
+
|
73 |
+
# Multi-scale watermark detection
|
74 |
+
scales = [1.0, 0.5, 2.0]
|
75 |
+
masks = []
|
76 |
+
|
77 |
+
for scale in scales:
|
78 |
+
scaled = cv2.resize(denoised, None, fx=scale, fy=scale)
|
79 |
+
thresh = cv2.adaptiveThreshold(
|
80 |
+
scaled, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
81 |
+
cv2.THRESH_BINARY_INV, 11, 2
|
82 |
+
)
|
83 |
+
|
84 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
85 |
+
mask = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
|
86 |
+
|
87 |
+
if scale != 1.0:
|
88 |
+
mask = cv2.resize(mask, (denoised.shape[1], denoised.shape[0]))
|
89 |
+
|
90 |
+
masks.append(mask)
|
91 |
+
|
92 |
+
# Combine masks
|
93 |
+
final_mask = np.zeros_like(denoised)
|
94 |
+
for mask in masks:
|
95 |
+
final_mask = cv2.bitwise_or(final_mask, mask)
|
96 |
+
|
97 |
+
return final_mask
|
98 |
+
|
99 |
+
def remove_watermark(self, img, mask, strength=0.8):
|
100 |
+
# Apply inpainting
|
101 |
+
inpainted = cv2.inpaint(img, mask, 3, cv2.INPAINT_TELEA)
|
102 |
+
|
103 |
+
# Apply deep learning model
|
104 |
+
tensor_img = self.preprocess_image(inpainted).to(self.device)
|
105 |
+
with torch.no_grad():
|
106 |
+
output = self.model(tensor_img)
|
107 |
+
dl_result = output.squeeze(0).cpu().numpy().transpose(1, 2, 0)
|
108 |
+
|
109 |
+
# Apply image restoration
|
110 |
+
denoise_img = restoration.denoise_tv_chambolle(dl_result, weight=0.1)
|
111 |
+
enhanced = cv2.detailEnhance(denoise_img.astype(np.float32), sigma_s=10, sigma_r=0.15)
|
112 |
+
|
113 |
+
# Blend results
|
114 |
+
result = cv2.addWeighted(enhanced, strength, img.astype(np.float32)/255, 1-strength, 0)
|
115 |
+
return (result * 255).astype(np.uint8)
|
116 |
+
|
117 |
+
def process_image(input_image, strength, enhance_details):
|
118 |
+
remover = WatermarkRemover()
|
119 |
|
120 |
+
# Detect watermark
|
121 |
+
mask = remover.detect_watermark(input_image)
|
122 |
|
123 |
+
# Remove watermark
|
124 |
+
result = remover.remove_watermark(input_image, mask, strength)
|
|
|
|
|
125 |
|
126 |
+
# Optional detail enhancement
|
127 |
+
if enhance_details:
|
128 |
+
result = cv2.detailEnhance(result, sigma_s=10, sigma_r=0.15)
|
129 |
|
130 |
return result, mask
|
131 |
|
132 |
+
# Gradio Interface
|
133 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
134 |
+
gr.Markdown("""
|
135 |
+
# Removedor Avançado de Marca D'água
|
136 |
+
Este aplicativo utiliza uma combinação de deep learning e processamento de imagem para remover marcas d'água.
|
137 |
+
""")
|
138 |
|
139 |
with gr.Row():
|
140 |
with gr.Column():
|
141 |
input_image = gr.Image(label="Imagem Original", type="numpy")
|
142 |
+
strength_slider = gr.Slider(
|
143 |
+
minimum=0.1,
|
144 |
+
maximum=1.0,
|
145 |
+
value=0.8,
|
146 |
+
step=0.1,
|
147 |
+
label="Intensidade da Remoção"
|
148 |
)
|
149 |
+
enhance_checkbox = gr.Checkbox(
|
150 |
+
label="Melhorar Detalhes",
|
151 |
+
value=True
|
|
|
|
|
|
|
152 |
)
|
153 |
+
process_btn = gr.Button("Processar Imagem", variant="primary")
|
154 |
|
155 |
with gr.Column():
|
156 |
output_image = gr.Image(label="Imagem Processada")
|
157 |
+
mask_image = gr.Image(label="Máscara de Marca D'água")
|
158 |
+
|
159 |
|
160 |
# Eventos
|
161 |
process_btn.click(
|
162 |
fn=process_image,
|
163 |
+
inputs=[input_image, strength_slider, enhance_checkbox],
|
164 |
outputs=[output_image, mask_image]
|
165 |
)
|
166 |
|
167 |
gr.Markdown("""
|
168 |
+
## Recursos Avançados:
|
169 |
+
- Detecção multi-escala de marca d'água
|
170 |
+
- Modelo de deep learning para reconstrução de imagem
|
171 |
+
- Restauração avançada de imagem
|
172 |
+
- Preservação de detalhes
|
173 |
+
- Controle de intensidade ajustável
|
|
|
174 |
|
175 |
+
## Dicas de Uso:
|
176 |
+
1. Ajuste a 'Intensidade da Remoção' para controlar o balanço entre remoção da marca e preservação da imagem
|
177 |
+
2. Ative 'Melhorar Detalhes' para realçar a qualidade da imagem final
|
178 |
+
3. Visualize a máscara para entender quais áreas estão sendo processadas
|
179 |
""")
|
180 |
|
181 |
if __name__ == "__main__":
|