Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,54 @@
|
|
1 |
-
import requests
|
2 |
import tensorflow as tf
|
3 |
-
import
|
4 |
-
from
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
tf_model = tf.keras.models.load_model(tf_model_path)
|
10 |
-
|
11 |
-
# Define your class labels.
|
12 |
-
class_labels = ["Normal", "Cataract"]
|
13 |
-
|
14 |
-
def preprocess_image(image):
|
15 |
-
# Resize the image to the input size required by the model (e.g., 224x224).
|
16 |
-
image = image.resize((224, 224))
|
17 |
-
# Convert the PIL image to a NumPy array and normalize pixel values.
|
18 |
-
image = np.array(image) / 255.0
|
19 |
-
# Add a batch dimension to the image.
|
20 |
-
image = np.expand_dims(image, axis=0)
|
21 |
-
return image
|
22 |
-
|
23 |
-
def predict(inp):
|
24 |
-
# Preprocess the input image.
|
25 |
-
inp = preprocess_image(inp)
|
26 |
-
# Make predictions using your custom TensorFlow model.
|
27 |
-
predictions = tf_model.predict(inp)
|
28 |
-
# Get the class label with the highest confidence.
|
29 |
-
predicted_class = class_labels[np.argmax(predictions)]
|
30 |
-
# Get the confidence score of the predicted class.
|
31 |
-
confidence = float(predictions[0][np.argmax(predictions)])
|
32 |
-
|
33 |
-
# Create a dictionary with the predicted class and its confidence.
|
34 |
-
result = {predicted_class: confidence}
|
35 |
-
|
36 |
-
return result
|
37 |
-
|
38 |
-
# Create a Gradio interface.
|
39 |
-
gr.Interface(
|
40 |
-
fn=predict,
|
41 |
-
inputs=gr.inputs.Image(type="pil"),
|
42 |
-
outputs=gr.outputs.Label(num_top_classes=1)
|
43 |
-
).launch()
|
|
|
|
|
1 |
import tensorflow as tf
|
2 |
+
import efficientnet.tfkeras as efn
|
3 |
+
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense
|
4 |
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Dimensões da imagem
|
8 |
+
IMG_HEIGHT = 224
|
9 |
+
IMG_WIDTH = 224
|
10 |
+
|
11 |
+
# Função para construir o modelo
|
12 |
+
def build_model(img_height, img_width, n):
|
13 |
+
inp = Input(shape=(img_height, img_width, n))
|
14 |
+
efnet = efn.EfficientNetB0(
|
15 |
+
input_shape=(img_height, img_width, n),
|
16 |
+
weights='imagenet',
|
17 |
+
include_top=False
|
18 |
+
)
|
19 |
+
x = efnet(inp)
|
20 |
+
x = GlobalAveragePooling2D()(x)
|
21 |
+
x = Dense(2, activation='softmax')(x)
|
22 |
+
model = tf.keras.Model(inputs=inp, outputs=x)
|
23 |
+
opt = tf.keras.optimizers.Adam(learning_rate=0.000003)
|
24 |
+
loss = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.01)
|
25 |
+
model.compile(optimizer=opt, loss=loss, metrics=['accuracy'])
|
26 |
+
return model
|
27 |
+
|
28 |
+
# Carregue o modelo treinado
|
29 |
+
loaded_model = build_model(IMG_HEIGHT, IMG_WIDTH, 3)
|
30 |
+
loaded_model.load_weights('modelo_treinado.h5')
|
31 |
+
|
32 |
+
# Função para fazer previsões usando o modelo treinado
|
33 |
+
def predict_image(input_image):
|
34 |
+
# Realize o pré-processamento na imagem de entrada, se necessário
|
35 |
+
# input_image = preprocess_image(input_image)
|
36 |
+
|
37 |
+
# Faça uma previsão usando o modelo carregado
|
38 |
+
input_image = tf.image.resize(input_image, (IMG_HEIGHT, IMG_WIDTH))
|
39 |
+
input_image = tf.expand_dims(input_image, axis=0)
|
40 |
+
prediction = loaded_model.predict(input_image)
|
41 |
+
|
42 |
+
# A saída será uma matriz de previsões (no caso de classificação de duas classes, será algo como [[probabilidade_classe_0, probabilidade_classe_1]])
|
43 |
+
return prediction
|
44 |
+
|
45 |
+
# Crie uma interface Gradio para fazer previsões
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=predict_image,
|
48 |
+
inputs="image",
|
49 |
+
outputs="text",
|
50 |
+
interpretation="default"
|
51 |
+
)
|
52 |
|
53 |
+
# Execute a interface Gradio
|
54 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|