Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import efficientnet.tfkeras as efn
|
|
3 |
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
|
|
6 |
|
7 |
# Dimensões da imagem
|
8 |
IMG_HEIGHT = 224
|
@@ -66,15 +67,32 @@ def predict_image(input_image):
|
|
66 |
# For example:
|
67 |
# formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}\nObject Detection: {bounding_box_coordinates}"
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Crie uma interface Gradio para fazer previsões
|
74 |
iface = gr.Interface(
|
75 |
fn=predict_image,
|
76 |
-
inputs="
|
77 |
-
outputs="
|
78 |
interpretation="default"
|
79 |
)
|
80 |
|
|
|
3 |
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
|
8 |
# Dimensões da imagem
|
9 |
IMG_HEIGHT = 224
|
|
|
67 |
# For example:
|
68 |
# formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}\nObject Detection: {bounding_box_coordinates}"
|
69 |
|
70 |
+
# Create an output image with object detection
|
71 |
+
output_image = input_image # Replace this with your object detection visualization
|
72 |
+
|
73 |
+
# Convert the output image to bytes
|
74 |
+
output_image_bytes = Image.fromarray(np.uint8(output_image * 255))
|
75 |
+
|
76 |
+
# Create an image with the label "Normal" or "Cataract" outside the image
|
77 |
+
draw = ImageDraw.Draw(output_image_bytes)
|
78 |
+
font = ImageFont.load_default() # You can customize the font and size here
|
79 |
+
label_text = f"Predicted Class: {predicted_class}"
|
80 |
+
label_size = draw.textsize(label_text, font=font)
|
81 |
+
label_position = (10, 10) # You can adjust the label position
|
82 |
+
draw.rectangle([label_position, (label_position[0] + label_size[0], label_position[1] + label_size[1])], fill="white")
|
83 |
+
draw.text(label_position, label_text, fill="black", font=font)
|
84 |
+
|
85 |
+
# Convert the image with the label to bytes
|
86 |
+
labeled_image_bytes = output_image_bytes.tobytes()
|
87 |
+
|
88 |
+
# Return both the image with object detection and the labeled image
|
89 |
+
return [labeled_image_bytes, f"Predicted Class: {predicted_class}"]
|
90 |
|
91 |
# Crie uma interface Gradio para fazer previsões
|
92 |
iface = gr.Interface(
|
93 |
fn=predict_image,
|
94 |
+
inputs=gr.inputs.Image(label="Upload an Image", type="file"),
|
95 |
+
outputs=[gr.outputs.Image(type="pil"), gr.outputs.Text(label="Prediction", type="markdown")],
|
96 |
interpretation="default"
|
97 |
)
|
98 |
|