Spaces:
Running
Running
File size: 6,927 Bytes
5ae02e5 23dd469 5ae02e5 23dd469 7f1ced9 23dd469 a58afc9 388fe1b a58afc9 7f1ced9 5ae02e5 a58afc9 7f1ced9 a58afc9 7f1ced9 a58afc9 7f1ced9 a58afc9 2a6eab9 aa1a596 a58afc9 aa1a596 a58afc9 7f1ced9 6418068 7f1ced9 5ae02e5 6418068 58e0199 6418068 23dd469 58e0199 7f1ced9 a58afc9 58e0199 6418068 23dd469 58e0199 2a6eab9 58e0199 6418068 58e0199 7f1ced9 58e0199 7f1ced9 58e0199 7f1ced9 58e0199 7f1ced9 a58afc9 58e0199 7f1ced9 58e0199 2a6eab9 6418068 a58afc9 58e0199 a58afc9 58e0199 7f1ced9 58e0199 a58afc9 2a6eab9 a58afc9 58e0199 2a6eab9 a58afc9 7f1ced9 58e0199 2a6eab9 a58afc9 7f1ced9 58e0199 2a6eab9 7f1ced9 58e0199 7f1ced9 a58afc9 58e0199 a58afc9 7f1ced9 58e0199 a58afc9 aa1a596 a58afc9 aa1a596 a58afc9 7f1ced9 58e0199 7f1ced9 58e0199 aa1a596 2a6eab9 a58afc9 58e0199 a58afc9 58e0199 a58afc9 7f1ced9 a58afc9 7f1ced9 a58afc9 2a6eab9 388fe1b 23dd469 a58afc9 6418068 aa1a596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import torch
import torchaudio
import numpy as np
from transformers import AutoProcessor, SeamlessM4Tv2Model
from datetime import datetime
class SeamlessTranslator:
def __init__(self):
self.model_name = "facebook/seamless-m4t-v2-large"
print("Loading model...")
self.processor = AutoProcessor.from_pretrained(self.model_name)
self.model = SeamlessM4Tv2Model.from_pretrained(self.model_name)
self.sample_rate = self.model.config.sampling_rate
self.languages = {
"๐บ๐ธ English": "eng",
"๐ช๐ธ Spanish": "spa",
"๐ซ๐ท French": "fra",
"๐ฉ๐ช German": "deu",
"๐ฎ๐น Italian": "ita",
"๐ต๐น Portuguese": "por",
"๐ท๐บ Russian": "rus",
"๐จ๐ณ Chinese": "cmn",
"๐ฏ๐ต Japanese": "jpn",
"๐ฐ๐ท Korean": "kor"
}
def translate_text(self, text, src_lang, tgt_lang, progress=gr.Progress()):
progress(0.3, desc="Processing input...")
try:
inputs = self.processor(text=text, src_lang=self.languages[src_lang], return_tensors="pt")
progress(0.6, desc="Generating audio...")
audio_array = self.model.generate(**inputs, tgt_lang=self.languages[tgt_lang])[0].cpu().numpy().squeeze()
progress(1.0, desc="Done!")
return (self.sample_rate, audio_array), f"โ
Translation completed: {src_lang} โ {tgt_lang}"
except Exception as e:
raise gr.Error(f"โ Translation failed: {str(e)}")
def translate_audio(self, audio_path, tgt_lang, progress=gr.Progress()):
if audio_path is None:
raise gr.Error("โ Please upload an audio file")
progress(0.3, desc="Loading audio...")
try:
audio, orig_freq = torchaudio.load(audio_path)
audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16000)
progress(0.6, desc="Translating...")
inputs = self.processor(audios=audio, return_tensors="pt")
audio_array = self.model.generate(**inputs, tgt_lang=self.languages[tgt_lang])[0].cpu().numpy().squeeze()
progress(1.0, desc="Done!")
return (self.sample_rate, audio_array), "โ
Audio translation completed"
except Exception as e:
raise gr.Error(f"โ Translation failed: {str(e)}")
css = """
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
padding: 2rem;
background: linear-gradient(135deg, #1e40af, #3b82f6);
border-radius: 12px;
color: white;
}
.main-title {
font-size: 2.5rem;
font-weight: bold;
margin-bottom: 0.5rem;
}
.main-subtitle {
font-size: 1.2rem;
opacity: 0.9;
}
.container {
padding: 1.5rem;
border-radius: 12px;
background: white;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
margin-bottom: 1.5rem;
}
.status-box {
padding: 1rem;
border-radius: 8px;
background: #f0f9ff;
border-left: 4px solid #3b82f6;
margin-top: 1rem;
}
.footer {
text-align: center;
margin-top: 2rem;
padding: 1rem;
color: #666;
}
"""
def create_ui():
translator = SeamlessTranslator()
with gr.Blocks(css=css, title="A.R.I.S. Translator") as demo:
gr.HTML(
"""
<div class="main-header">
<div class="main-title">A.R.I.S. Translator</div>
<div class="main-subtitle">Advanced Real-time Interpretation System</div>
</div>
"""
)
with gr.Tabs():
# Text Translation Tab
with gr.Tab("๐ค Text Translation"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text to Translate",
placeholder="Enter your text here...",
lines=5
)
with gr.Row():
src_lang = gr.Dropdown(
choices=list(translator.languages.keys()),
value="๐บ๐ธ English",
label="Source Language"
)
tgt_lang = gr.Dropdown(
choices=list(translator.languages.keys()),
value="๐ช๐ธ Spanish",
label="Target Language"
)
translate_btn = gr.Button("๐ Translate", variant="primary")
status_text = gr.Textbox(
label="Status",
interactive=False
)
with gr.Column():
audio_output = gr.Audio(
label="Translation Output",
type="numpy"
)
# Audio Translation Tab
with gr.Tab("๐ค Audio Translation"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio",
type="filepath"
)
tgt_lang_audio = gr.Dropdown(
choices=list(translator.languages.keys()),
value="๐บ๐ธ English",
label="Target Language"
)
translate_audio_btn = gr.Button("๐ Translate Audio", variant="primary")
status_text_audio = gr.Textbox(
label="Status",
interactive=False
)
with gr.Column():
audio_output_from_audio = gr.Audio(
label="Translation Output",
type="numpy"
)
gr.HTML(
"""
<div class="footer">
Powered by Meta's SeamlessM4T model | Built with Gradio
</div>
"""
)
# Event handlers
translate_btn.click(
fn=translator.translate_text,
inputs=[text_input, src_lang, tgt_lang],
outputs=[audio_output, status_text]
)
translate_audio_btn.click(
fn=translator.translate_audio,
inputs=[audio_input, tgt_lang_audio],
outputs=[audio_output_from_audio, status_text_audio]
)
return demo
if __name__ == "__main__":
demo = create_ui()
demo.queue()
demo.launch() |